
Bifurcation diagram of system of ordinary
differential equations by continuation algorithm

Boris Fačkovec

29th September 2011

Summary
The program takes system of ordinary differential equations with one parameter and starting point
on input and calculates one curve of stationary solutions and its stability. The algorithm was pro-
posed by Kubicek in 1976.

Let N be number of differential equations and M be number of steps of continuation. The code
is O(N3M) complex in big O notation. It stores whole trajectory in RAM, therefore it has O(M)
memory consumption for long trajectories (in usual cases M > N2) and O(N2) for short ones.

The program works fine with MATLAB 2008b and with GNU Octave, version 3.2.4 .

Brief theory
Stationary solution

Let f be set of N functions of N variables and one parameter. The equations (1) form a system of
ordinary differential equations with a parameter.

ẋ = f(x1...xN,α) (1)

Stationary solutions of this system are the points x0 in the phase space, where f(x0) = 0 and
depend on parameter α .

A characteristic quantity (one of variables x1...xN , their average, norm of vector x0 etc) plotted
against α is called bifurcation diagram 1. Construction of bifurcation diagram is the fundamental
task of non-linear dynamic system analysis. The simplest approach to bifurcation diagram appears
to be solving set of nonlinear equations for particular α . However, convergence of Newton method
is not ensured if starting too far from stationary point, especially in many-dimensional phase spaces.
Such calculation would be very time-consuming, as one would have to start from many different

An approach to obtain whole curve of stationary solutions up to infinite accuracy 2 is here
described and implemented.

1“diagram řešení” in Czech. Continuation can be used to plot curves of limit points and Hopf bifurcations in
2D bifurcation diagrams (“bifurkační diagram” in Czech) for 2-parametric systems. I have implemented the latter
continuation algorithm in different MATLAB function package.

2Oversimplification! Round-off errors can trap the algorithm in bifurcation points, where 2 or more curves cross
each other.

1

Searching for stationary solutions

A stationary solution can be found solving undetermined system of N non-linear algebraic equa-
tions with N +1 variables (x1...xN , α). Such system can be solved by Newton method after careful
freezing one parameter. For some stationary solutions

∂xk

∂ x̄
= 0 (2)

These stationary solutions are called limit points and they correspond to saddle-node bifurca-
tions. In these points, x_i cannot be frozen. Problem emanating from freezing wrong variable is
depicted on Figure 1.

A

B

x

y

Figure 1: Incapability to correct position when wrong variable is frozen. Predictor approached
from A to B. If x variable is frozen, Newton method can move only along blue lines, therefore
cannot return to correct trajectory (red).

The problem can be solved by diagonalization of Jacobi matrix with Gauss-Jordan method
using maximum pivot. The last remaining column represents the best variable to be frozen.

Continuation of stationary solutions

introducing artificial parameter z,

N

∑
i=1

(
dxi

dz

)2

+

(
dα

dz

)2

= 1 (3)

meaning length of the curve in Eucleides metric. Parameter α will be treated the same as the
variables of Equation (1), let therefore xN+1 = α . Differentiation of (1) yields

2

d fi

dz
=

N+1

∑
j=1

∂ fi

∂x j

dx j

dz
= 0 (4)

must be zero in stationary point. System of N linear equations (1) has unique non-zero solution
iff the matrix

Jk =

∂ f1
∂x1

... ∂ f1
∂xk−1

∂ f1
∂xk+1

... ∂ f1
∂xN+1

...
∂ fN
∂x1

... ∂ fN
∂xk−1

∂ fN
∂xk+1

... ∂ fN
∂xN+1

 (5)

is regular. This condition can be again ensured by diagonalization of full N ×N + 1 Jacobi
matrix with Gauss-Jordan method using maximum pivot. Let the elements of the last remaining
(kth) column denote β1...βk−1,βk+1...βN+1. Then,

dxk

dz
=±

(
1+

N+1

∑
i=1,i 6=k

β
2
i

)− 1
2

(6)

dxi

dz
= βi

dxk

dz
, i ∈ {1,2, ...,k−1,k+1, ...,n+1} (7)

The sign of derivative dxk
dz is kept the same as in the previous step. Remembering sings of

previous derivatives keeps us in the right direction and is used in later trajectory analyses to find
limit points.

Starting from known stationary solution, the curve can be prolonged using Euler method

xnew
i = xold

i +
dxold

i
dz

∆z, i ∈ {1,2, ...,N +1} (8)

Structure of the code
Summary

On Figure 2, you can see hierarchy of the program. Functions at the ends of arrows call functions
from which particular arrows are pointing.

3

Figure 2: Hierarchy of functions

The following functions are used (all included in standard Octave and Matlab):

abs find real
ceil imag save
clc inv sign
eig max size

error num2cell sqrt
eye ones zeros

Derivatives are obtained numerically. Step size is adaptively changed depending on number of
Newton iterations in previous step.

Overview of functions

in alphabetical order. N denotes number of variables (equations).

• adaptive_step_change(step, iter) - returns new stepsize, takes previous stepsize step
and number of iterations of corrector as input. Default optimum stepsize change factor as a
function of Newton interations was determined based on author’s experiences with few par-
ticular models and it is probably not the best choice for other models. Alternative scheme can
be introduced best by altering the nasobic vector in adaptive_step_change.m. Turning
off adaptive step change can be done by deleting corresponding lines in derpar.m, but will
probably cause crash in limit points and is not recommended.

• corrector(xvec, hder, emtol) - applies Newton method to correct the predicted sta-
tionary solution xvec. First, it calculates Jacobi matrix, then it finds the variable to freeze,
finally corrects by Newton, allowing at most 11 iterations. xvec is vector N×1, hder denotes
step in numerical differentiation (default 1E-8), emtol denotes maximum error tolerance in
Newton method (default 1E-4).

4

• derpar(xinit, ders, mstep, nosteps, emtol, hder) - main function of the algo-
rithm, returns trajectory and saves it to file traj.dat. Starting point xinit (vector N× 1)
should be wisely chosen - it should not be a bifurcation point (see Limitations section). N×1
vector ders determines to which ortant a curve tangent points, i.e. it determines direction of
the curve (see Equation 6). Its elements might be only 1’s or -1’s. Maximum step size mstep

should be better set (reasonably) small in order to obtain smooth curve. The algorithm will
optimize stepsize during continuation. Number of steps nosteps determines computational
time required for integration rather than length of curve on output. Hence, should user wish
longer curve, he/she should continue from the last point of previous continuation using the
same ders (present in output, see section “Structure of output”). emtol and hder and are
optional. denotes tolerance of Newton method and should be set reasonably small depend-
ing on steepness and complexity of the vector field of your model. Default hder (shift in
numerical differentiation) of 1E-8 is sufficiently small to represent correct derivatives and
sufficiently big not to introduce significant round-off error. The same hder and emtol are
used for all called functions.

• findmax(A) - finds maximum value element in a matrix, returns its position as a 1×2 vector.

• GEv(JJ) - Gauss-Jordan elimination using maximum pivot of a matrix JJ. JJ must be N×
N +1 matrix. Returns the elements of the last remaining column and its index.

• JJ(vec,hder) - returns Jacobi matrix of the model using numerical derivatives.

• model(xvec) - the only file that must be altered by user. System of ordinary differential
exuations must be written in the form briefly described in model.m file. The residual form is
familiar to all users of odeXY or fzero functions used in MATLAB.

• predictor(xvec,ders,step,hder) - uses Euler method to calculate prediction of a new
point of the curve of stationary solutions (see Equation 8).

Usage
After download, unpack and change to directory with the functions.

1. Write your model in model.m file in the form described in the previous section (see also
solved examples).

2. In Octave or MATLAB command line use function derpar(xinit, N, mstep, nosteps,

emtol, hder) (see previous section and worked examples).

Seek your trajectory in output file.

5

Structure of output
On Figure 3, you can see a typical output.

Figure 3: Sample output for system of 2 differential equations (CSTR1EXO).

Under few lines of text starting with #s added by MATLAB, you can find trajectory, one point
in each line. Let N be number of differential equations. Following table outlines meaning of output
located in nth column of output trajectory.

from column to column output means
1 length of the curve from beginning
2 N +1 variables x1...xN
N +2 parameter α

N +3 error of predictor in this step
N +4 2N +3 derivatives dxi

dz
2N +4 derivative dα

dz
2N +5 determinant of Jacobi matrix
2N +6 3N +5 real parts of eigenvalues of Jacobi matrix

important for stability determination
3N +6 4N +5 imaginary parts of eigenvalues of Jacobi matrix

important for identification of Hopf bifurcations
and focus-node transitions

4N +6 index of pivot in Gauss-Jordan eliminations

Solved example
Model CSTR1EXOe

Model of continuous ideally stirred tank reactor with exothermal reaction was evolved [Holodniok
et al., 1986]. The model contains two variables (dimensionless temperature Θ, conversion x) and
one parameter (dimensionless residence time τ).

1. model.m file looks like as follows:

6

Figure 4: Content of model.m file in computing CSTR1EXO model. Other parameters can be
found in enclosed file cstr1exo.m.

2. derpar([0 0 0]', [1 1 1]', 0.05, 1000, 1e-4, 1e-8)

3. plot of traj(:,2) (conversion) against traj(:,4) (residence time) using Gnuplot yelds:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2

c
o
n
v
e
rs

io
n

dimensionless residence time

Figure 5: Curve of stationary solutions for model of continuous stirred tank reactor. Smoothness is
ensured using small mstep and higher nosteps.

Stationary solution is stable iff real parts of all eigenvalues are negative.

7

Limitations
• The algorithm cannot start directly from a bifurcation point. In case of bifurcation point Jk

is singular and program fails. Fix to this problem will be in future version.

• The algorithm cannot discover isolated curves of stationary solutions.

• Scaling of quantities of a model to similar order of magnitude is recommended.

References
M Holodniok, A Klíč, M Kubíček, and M Marek. Metody analýzy nelineárních dynamický modelu.

1986.

M Kubíček. Algorithm 502: Dependence of Solution of Nonlinear Systems on a Parameter. ACM
Trans. Math Software, (2):98, 1976.

8

