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Abstract

This work presents a new method for calculating rate constants for configurational

transitions described in terms of a master equation. The method is based on con-

straining molecular dynamics simulations to boxes in configuration space, and is also

known as “boxed molecular dynamics”. Rate constants can be easily calculated even

for systems deviating from an exponential distribution of the first passage times, as a

result of the presence of internal barriers and roughness of the dividing surfaces. The

theoretical justification of the method is based on the concept of mean first passage

times. One of the assumptions of the reactive flux formulation is omitted; regression

of the population evolution is used instead of calculation of the rate constant at a

single point, so the distribution of first passage times is not required to be strictly

exponential. The efficiency and correctness of the new method, boxed molecular

dynamics in the first passage time formulation of the rate constants (FPT-BXD),

is demonstrated for toy models. Preliminary results of simulations for a cluster of

Lennard-Jones discs using FPT-BXD are discussed.
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Glossary of Abbreviations

AXD accelerated molecular dynamics

BXD boxed molecular dynamics

DNEB doubly nudged elastic band (method)

DPS discrete path sampling

FPT first passage time

FPT-BXD boxed molecular dynamics in the first passage time formulation

of the rate constants

HA harmonic approximation

IDDT intramolecular dynamics diffusion theory

LJ Lennard-Jones

LJ2D
7 cluster of seven Lennard-Jones disks

MD molecular dynamics

ME master equation

MFPT mean first passage time

MSM Markov state model

NGT new graph transform

PES potential energy surface

RMSD root mean square displacement

RRKM Rice, Ramsperger, Kassel and Marcus (theory)

SODE system of ordinary differential equations

TPS transition path sampling

TST transition state theory
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Glossary of Symbols

A label of a box / species

A transition matrix

Aij an element of a transition matrix

a dimensionless concentration of species A

B label of a box / species

b dimensionless concentration of species B

D distance between two points in configuration space

EA activation energy

FA→∂AB normalised reaction flux from box A to dividing surface ∂AB

FA→∂AB reaction flux from box A to dividing surface ∂AB

H step function for box definition in configuration space

H Hamiltonian of the system

H0 Hamiltonian at the dividing surface

h Planck’s constant

KA→B equilibrium constant

kTSTA→B transition state theory rate constant

ki→j rate constant of transition from box i to box j

MFPTA→B mean first passage time of a transition from A in equilibrium

to B in equilibrium

MFPTA→∂AB mean first passage time of a transition from A in equilibrium

to dividing surface ∂AB

P normalised population
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P population

p coordinate vector

q momentum vector

S phase space

ds element of the dividing surface

T kinetic energy of the system

t time

tfpi first passage time for hitting box i starting from a point in a different box

u velocity of a particle

V potential energy of the system

V † minimum potential energy at the dividing surface

vA→B reaction rate

W total volume

Z canonical partition function

Z‡ canonical sum of states at the dividing surface

β 1/kBT

Γi phase volume (partition function) of a box i

ε well depth in the Lennard-Jones potential

κ reaction rate coefficient

κ transmission coefficient

ρ probability density at a point in phase space

σ collision radius in the Lennard-Jones potential

τA→B time of evolution of one trajectory starting from a phase state

in set A ending in set B

ϕ dynamics / phase flow

Ω density of states
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Chapter 1

Introduction

Life is a non-equilibrium phenomenon. Biological processes result from complex

networks of chemical reactions, diffusion and configurational transitions of molecules

or supermolecular complexes. We are generally interested in how and how fast a

particular process occurs. The question of how the process occurs stands for a

qualitative information about the pathway and intermediates, which if modified,

cause the nature and the rate of the process to change significantly. The question of

how fast the process occurs concerns the quantitative description of the dynamics.

An example of an interesting biological process is protein folding, which is na-

ture’s solution to an NP-hard1 (in some simplified formulations NP-complete2;3)

complex non-linear optimisation problem. However, even simplified computer sim-

ulations on time scales of seconds using classical molecular dynamics (MD) would

take thousands of years with modern computers. Simulation methods for more ef-

ficient simulations of dynamics of molecular systems have to be developed to make

studying complex molecular systems feasible. In the last few decades, we have seen

significant developments in methodology for simulating configurational transitions of

molecular systems, ranging from small Lennard-Jones clusters to large biomolecules.

Most of the methods are based on the reactive flux approach and transition state

theory (TST) developed 80 years ago for chemical reactions, application of which to

soft matter with low barriers results in systematic errors.

In the present work, the classical dynamics determined by the potential energy

surface (PES)4 is studied numerically. Species are defined as regions on the PES

and the rates are defined based on the length of trajectories in the phase space.

This chapter starts from a general formulation of deterministic dynamics of finite-

dimensional systems and follows the approximations and the development leading

to the previous formulation of boxed molecular dynamics (BXD).5
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Introduction

1.1 Master Equations

A dynamical system6 is a tuple {S, ϕ}, where S is the phase space and ϕ is a

mapping ϕ : S× R→ S satisfying two conditions:

ϕ(x, 0) = x ∀x ∈ S

ϕ(ϕ(x, t), s) = ϕ(x, t+ s) ∀t, s ∈ R, ∀x ∈ S .
(1.1)

The physical meaning of the real number t in equation (1.1) is the evolution time

between states x and ϕ(x, t). The first passage time (FPT) can be defined for each

point x in S and a set of points C ⊂ S as the minimum positive value of time tfpC
satisfying the condition

ϕ(x, tfpC ) ∈ C . (1.2)

The ultimate goal of studies in dynamics is to find an approximation of ϕ that

is accurate and easy to evaluate. In the case of classical molecular systems, the

phase space S is a product of an N -dimensional momentum and an N -dimensional

configuration space. The dynamics ϕ (called also the phase flow) are given by a

Hamiltonian vector field determined by the PES, generating an autonomous system

of 2N ordinary differential equations (SODE):

.
qi =

pi
mi

.
pi = −∂H (q,p)

∂qi
,

(1.3)

where qi and pi are the ith components of an N -dimensional spatial coordinate

vector p and an N -dimensional momentum vector p, respectively. mi is the mass of

the ith particle. The Hamiltonian H generally consists of a non-linear function of

coordinates q (potential energy V (q)) and the kinetic energy T (p) =
∑

i p
2
i /2mi.

Evaluation of phase flow in constant time is possible only exceptionally for such

a system. The dynamics are usually simulated by a numerical integration of the

SODE (1.3), which scales linearly with the length and the number of the simulated

trajectories.

A common approach to simplify Equation (1.3) is to discretise the phase space

into boxes. In chemistry, this approach is widely used. Configuration space boxes

correspond to species (molecules, ions, radicals etc.) and kinetic equations describe

the evolution of the populations in the boxes. If only unimolecular reactions occur,

which is the case for structural transitions, the system (1.3) of kinetic equations

2



Introduction

reduces to a linear homogeneous SODE:

.
x = Ax , (1.4)

where each component of vector x, xi, is a population of the ith box and A is the

transition matrix specific to the system and the discretisation. Equation (1.4) has

an analytical solution

x(t) = eAt x(0) . (1.5)

The right-hand side of equation (1.5) can be evaluated accurately and quickly for

reasonably large systems (up to millions of boxes).

In the context of conformational transitions, equation (1.4) is called the master

equation.7;8 If the space is divided into n boxes, information about the dynamical

behaviour of the system is reduced to n2 − n elements of A, also called the rate

constants. The answer to the question of how the process occurs is given by the

boxes undergoing a significant population change during the process. In chemistry,

the set of discrete paths through the boxes is called the reaction mechanism. The

question of how fast the process occurs is answered by the value of the overall

rate constant, which has to be evaluated by a simulation of the system or using

other approximations. Models for studying the evolution of the populations in the

configuration space boxes are special cases of Markov state models (MSM) and have

been recently successfully used for studying biomolecules.9;10

Discretisation of the phase space is a good approximation if the transition from

one box to another follows exponential kinetics. In phase space, such behaviour

implies an exponential distribution of the time lengths of the reactive trajectories.

This distribution usually applies if the species are separated by high energy barri-

ers. However, the presence of high energy barriers dividing the species is neither

a necessary nor a sufficient condition. Another important requirement of the ap-

proximation is the decorrelation of input and output trajectories. The behaviour of

the species must be independent on the reaction in which it was produced.11 Every

discretisation should be checked for the applicability of the MSM,12 for example

by comparing the internal equilibration time13 with the characteristic time of the

transition. More detailed theory and applications of MSM’s to biomolecules can be

found in methodology papers14–16 and recent reviews.8;17
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1.2 Rate Constants in Chemistry

A classical approach to describe unimolecular elementary reactions by rate equations

and to calculate the rate constant given the evolution proceeds as follows. Let us

consider a simple elementary irreversible reaction

A→ B . (1.6)

The dimensionless concentration a(t) = [A](t)/[A](0) follows power law kinetics

vA→B(t) =
db(t)

dt
= −da(t)

dt
= kA→B a(t) , (1.7)

with boundary conditions

a(0) = 1, lim
t→∞

a(t) = 0 , (1.8)

where vA→B(t) is the reaction rate at time t and kA→B is the rate constant. Solving

the differential equation (1.7) leads to

a(t) = e−kA→Bt (1.9)

and

vA→B(t) = kA→Be
−kA→Bt . (1.10)

The rate constant kA→B can be calculated from the evolution of species A as:

kA→B = −
d
dt
a(t)

a(t)
, (1.11)

which is independent of time t in the case of exponential behaviour for a(t). The

rate constant can be calculated by fitting the evolution of a(t) with (1.9) or by

evaluating the reciprocal of the mean value of vA→B(t):

kA→B =

∫ ∞
0

vA→B(t)dt∫ ∞
0

t vA→B(t)dt

. (1.12)

Let us now discuss the same system with a backward reaction,

A 
 B . (1.13)
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The concentration of species A evolves in time as

a(t) =
kB→A

kA→B + kB→A

+
kA→B

kA→B + kB→A

e−(kA→B + kB→A)t , (1.14)

and the rate of reaction as

vA→B(t) = kA→Be
−(kA→B + kB→A)t . (1.15)

Knowing the equilibrium constant of the system

KAB =
kA→B

kB→A

, (1.16)

we can calculate the rate constant with a method analogous to (1.11) as the solution

of equations (1.16) and

kA→B

kA→B + kB→A

= −
d
dt
a(t)

a(t)
. (1.17)

By analogy with system (1.6), the rate constant can be calculated without solving

a system of algebraic equations by fitting a(t) with (1.14) or using equation (1.12).

1.3 Rate Constant Calculation

The scientific development of the theory of chemical dynamics dates back to the 19th

century when van’t Hoff studied the dependence of reaction rate on temperature18

and Arrhenius introduced the concept of activation energy.19 In the following 50

years, great advances were achieved. Farkas first used the concept of equilibrium

flux to calculate reaction rates.20 Eyring introduced the concept of an “activated

complex”,21 the saddle point on the PES connecting the reactant and the product.

He derived a formula for the “absolute” rate constant for a reaction of any order

kEyringA→B (T ) = κ
1

βh

Z‡

Z
e−βEA , (1.18)

where κ is the transmission coefficient, an ad hoc parameter being generally about

unity, and Z‡ and Z are the partition sums of the activated state and the reactant,

respectively. β = 1/(kBT ) where T is the thermodynamic temperature and kB is

the Boltzmann constant, h is Planck’s constant and EA is the activation energy.

The reactant, activated complex and product are explicitly defined as single points

on the PES.

Transition state theory22–24 (TST) provides the fundamental basis for the reac-

5
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tive flux method used predominantly today. In TST, the rate constant is defined as

the equilibrium flux through the dividing surface divided by the population inside

the reactant box. In 1938, Wigner summarised25 the assumptions of TST:

1. the adiabatic separation of the movements of the electrons and nuclei (the

Born-Oppenheimer26 approximation),

2. the motion of the nuclei can be described by classical mechanics,

3. all trajectories crossing the dividing surface are reactive (no recrossing of the

dividing surface occurs).

Transition state theory is inherently a classical mechanical theory applicable for re-

actions in which a transition over a state with high energy is the determining step.23

From Wigner’s paper,23 it can be inferred that he does not define species unambigu-

ously by the dividing surface. The equilibrium rate constant can be calculated as

an integral over the dividing surface in phase space satisfying the non-recrossing

condition:

kTST
A→B(T ) =

W 2

Z

∫
dH0(q,p)/dt

|∇H0(q,p)|
ds , (1.19)

where H0(q,p) = 0 defines the surface and dH0(q,p)/dt is

dH0(q,p)

dt
=
∑
i

(
∂H0(q,p)

∂qi

∂(H (q,p)−H0(q,p))

∂pi
−

−∂H0(q,p)

∂pi

∂(H (q,p)−H0(q,p))

∂qi

)
.

(1.20)

The “total volume” W in expression (1.19) is used to scale the rate constant which

Wigner derived for a trimolecular reaction.

The classical TST rate constant in the microcanonical ensemble was developed

by Rice,27 Ramsperger,28 Kassel29 and Marcus30 (RRKM). The microcanonical rate

constant for transitions from A to B, can be written as

kTST
A→B(E) =

g(E)

h ΩA(E)
, (1.21)

where E is the total energy, ΩA is the density of states of box A, and g(E) is defined

as

g(E) =

∫ E

V ‡
Ω‡(E ′)dE′ , (1.22)

where Ω‡(E ′) is the density of states at the dividing surface and V ‡ is the minimum

potential energy of the transition state ensemble. From the relationship between the

6
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microcanonical and canonical ensembles it follows that k(T ) is the Laplace transform

of k(E).

The third assumption was soon identified as the main cause of the divergence

between the TST rate constants and the rate constants obtained from experiments.

Chandler reformulated the rate constant31 in the formalism of correlation functions32

using Onsager’s hypothesis.33;34 The simulation method based on this formula is

known as the “Bennett-Chandler” procedure35 and is usually performed in two

steps. First, the TST rate constant is calculated. Second, the TST rate constant is

corrected by the transmission coefficient κ:

kBC
A→B = κ kTST

A→B . (1.23)

κ is calculated from the probability of recrossing obtained from simulations of tra-

jectories starting at the dividing surface.

Another approach to correct for recrossings, variational TST,36;37 is based on

the assumption that the optimum dividing surface is the one that minimises the

recrossings. New insights were brought by studies identifying the transition state

ensemble with the hypersurface in the configuration space with the probability to

reach products (committor) equal to 0.5,38 and studies of phase space using a nor-

mally hyperbolic invariant manifold39;40 for construction of the transition state sur-

face. Kramers studied motion of a Brown particle in a potential field41 and derived

analytical formulae for the high and low friction limits. His results, generalised by

Grote and Hynes,42 were later shown43 to be equivalent to TST for parabolic barri-

ers. More information on recent developments of TST can be found in topic reviews.
44–46

Another approach to compute rate constants is the calculation of the mean first

passage times (MFPT’s). Instead of studying the equilibrium flux, actual trajecto-

ries and their evolution times are studied. Bunker and Hase studied the distribu-

tion of FPT’s (in their terminology “gap times”)47 and showed that even chemical

reactions do not follow strictly exponential distributions. In the microcanonical en-

semble, there is a non-negligible ensemble of periodic trajectories that do not escape

from their box. Behaviour deviating from the statistical RRKM description was

studied by plotting histograms of FPT’s by Hase and co-workers.48 However, most

of the development of the MFPT approach has been considered in configuration

space, the MFPT being the solution to a partial differential equation derived from

the Smoluchowski equation.49 The reciprocal of MFPT (in the configuration space

formulation) and the TST rate constant were shown to be equivalent for the high

barriers and well-defined dividing surfaces.49;50

7
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1.4 Simulation of Rare Events

A rare event can be loosely defined as a process that would take too much time

to simulate by conventional methods. The existence of rare events arises from the

fact that some systems show interesting behaviour on time scales much larger than

the shortest vibrational time determined by the structure of their PES. Examples

of such events are protein folding, conformational transitions of large biomolecules,

ions passing through a membrane channel, chemical reactions and many others.

General approaches to simulating rare events include: freezing uninvolved degrees

of freedom,35;51 using multiple time steps,52 parallelisation,53 parallel tempering,54

biasing the potential,55 and modification of the scaling behaviour with barrier height

from exponential to polynomial by reformulating the sampling from an initial value

problem to a boundary value problem.56

The unprecedented advancement in computational power over the last 30 years

gave rise to new, more efficient methods for the simulation of rare events. While

calculation of energy profiles along a selected coordinate is well understood and

relatively reliable,57 calculation of rate constants is usually based on TST, which

provides the upper limit for the reaction rate. Here only the methods most relevant

to this work are briefly explained. More details about the methods can be found in

recent reviews58;59 or Danielle Moroni’s thesis.60

Perhaps the most advanced method for calculation of classical rate constants is

transition path sampling (TPS).61–63 By analogy with Metropolis Monte Carlo,64 the

sampling of transition paths can be efficient because only small steps are made from

already known highly probable paths. The original formulation of random walks in

the transition path space was extended to deterministic dynamics.65 TPS not only

provides highly accurate estimates of rate constants, but also the most probable

transition path. The efficiency can be improved by defining more dividing surfaces,

leading to a similar method, transition interface sampling.60;66 TPS has also been

recently improved to overcome barriers in path space more easily.67 Nevertheless,

the computational cost of simulating a sufficient number of transition paths limits

its general usability.

Constraining the dynamics to a subset of the phase space can enforce simulation

of the desired rare event. In the Blue Moon method,68;69 the system is constrained

in a hypersurface in the configuration space and the mean force perpendicular to

this surface is calculated. Paci and Ciccotti used the method to calculate the trans-

mission coefficient for vacancy migration in a Lennard-Jones crystal.70 The formula

for the free energy was later modified so that it contains only explicit variables71

and was extended for the use of a general vectorial coordinate.72 Other examples

8
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of methods based on constraining MD are accelerated dynamics73 introduced by

Shalashilin and co-workers, and boxed molecular dynamics,5 which constrains the

dynamics in a box in configuration space.

Many other accelerated molecular dynamics methods have been proposed. Hy-

perdynamics74 fills boxes with a biasing potential and the times of processes on the

resulting shallower potential are renormalised accordingly. Various biasing poten-

tials have recently been used.75;76 Temperature accelerated MD77 calculates the rate

constants at higher temperatures and extrapolates to low temperature assuming the

Arrhenius equation.

In milestoning78 short simulations between predefined hypersurfaces in config-

uration space (called milestones) are performed instead of a single long one. The

dynamical behaviour is calculated from statistical properties of the short trajecto-

ries. The method gives accurate results if isocommittor surfaces (committor = 0.5)

are used as the milestones.79 Milestoning with boxes defined by Voronoi tesselation
80 can be generally applied without any knowledge of the best reaction coordinate.

In Voronoi partitioning of the space, a set of box centres xi uniquely defines the

boxes. A point in space x belongs to box A if

D(x,xA) < w(A, i)D(x,xi), ∀i 6= A , (1.24)

where D(x,y) means the distance between points x and y. The root mean square

distance (RMSD) is usually used as the measure D. In classical Voronoi tesselation,

w(i, j) is equal to 1 for any pair of boxes i, j.

Significantly increased computational efficiency can be achieved with discrete

path sampling81–83 (DPS) for systems with a reasonably small numbers of low-lying

minima. Transition states between the minima are found by geometry optimisation84–86

and the rate constants between neighbouring minima are calculated by an appro-

priate method, commonly the TST approach. The harmonic approximation can be

used to allow fast estimation of the TST rate constants. A framework for system-

atic improvement of the rate constants would be beneficial. Phenomenological rate

constants between the reactant and product sets of states can be calculated using

the new graph transform procedure87 (NGT) in which species defined as the basins

of attraction of local minima are gradually removed while the transition matrix is

renormalised.

9
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1.5 Boxed Molecular Dynamics

One of the recently proposed methods for simulating the thermodynamics and ki-

netics of rare events, boxed molecular dynamics5 (BXD), combines the advantages

of two older methods: intramolecular diffusion dynamics theory88;89 (IDDT) and

molecular dynamics accelerated by phase space constraints73 (AXD). In IDDT, the

configuration space is sliced along a reaction coordinate and the diffusion coefficient

is calculated using short MD simulations. In AXD, the reactant configuration space

is divided into two boxes. One box is placed close to the dividing surface representing

the transition state ensemble and the other box represents the reactants. In BXD,

this approach is generalised to more boxes placed along the reaction coordinate.

The free energy profile is calculated from the flux ratios between the boxes. BXD

aims to efficiently simulate the dynamics of the process using the master equation

with the rates calculated from the flux values.

A B C

∂BC∂AB

ti
m
e

coordinate

Figure 1.1: Implementation of boxed molecular dynamics according to Glowacki et al.5

After a few (up to 30) inversion events, a hit from box A can be used for initialisation of
the trajectory in box B. The method is not parallelised for the sake of easier initialisation

of the trajectory in a box.

Implementation of BXD is straightforward. An independent MD simulation is

run in each box. If the trajectory leaves the box, the positions are returned to the

previous point of the simulation and a velocity inversion procedure is performed.

The projections of velocities onto the reaction coordinate are inverted while the ve-

locity components parallel to the dividing surface remain unchanged. The velocities

of atoms not involved in the reaction coordinate are unchanged. This inversion pro-

cedure does not change the energy, momentum or angular momentum. The time of

each inversion event is recorded. The BXD trajectory in box i can be considered as

an ensemble of ni−1 + ni+1 subtrajectories, ni−1 being inverted from (ending at) the

boundary between boxes i and i-1 and ni+1 from the boundary between boxes i and
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i+1. The rate constant for the transition from box i to box i-1 is calculated from

the simulation as the equilibrium flux:

keqi→i−1 =
ni−1∑ni−1

j=1 τj
, (1.25)

where τj is the time length (evolution time) of the jth trajectory inverted from the

boundary between i and i-1. The free energy difference between boxes i and i-1 is

calculated from simulations in both boxes as:

∆Gi−1→i = −kBT ln

(
keqi−1→i

keqi→i−1

)
. (1.26)

Global dynamics can be described using the master equation with a tridiagonal

transition matrix A with non-zero elements

Ai,i−1 = keqi−1→i ,

Ai,i = −keqi→i−1 − k
eq
i→i+1 ,

Ai,i+1 = keqi+1→i .

(1.27)

The authors explicitly state that the detailed balance condition must be satisfied

and the dynamics must be ergodic for BXD to give correct results. The BXD

approach also assumes that the inversion procedure does not disturb the equilibrium

distribution in the boxes. An implicit assumption of BXD is that the TST rate

constants can be used for transitions between neighbouring boxes. However, the

validity of these assumptions has not been tested separately. The correctness of

BXD as a whole is demonstrated by consistency of the results with “brute force” MD

and milestoning. Free energy profiles have been shown to be robust with respect to

box selection with fast convergence of the results with the number of subtrajectories

ni−1 + ni+1 sampled in each box i.

BXD was used to study conformational changes of small (10-13 amino acid)

peptides.5 The gain in computational efficiency was clearly demonstrated. BXD

has the potential to significantly decrease the computational cost of simulating the

dynamics of rare events. Firstly, slicing the reaction coordinate into boxes can sig-

nificantly reduce the barrier height. Secondly, the independence of the simulations

in the boxes makes parallelisation of the method trivial and formally correct. An-

other advantage of the method is its natural relationship with the master equation.

BXD can be used for specialised applications, such as rationalisation of the power

law dynamics of loop formation in a small peptide.90

A later paper91 by the same authors, which focused more on dynamics, suggested
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corrections for fast dynamical motion. The distributions of FPT’s differ from those

obtained using milestoning and are not exponential. The artificial increase in the

number of short trajectories leads to overestimation of the calculated rate constants.

The authors suggest setting an evolution time threshold and excluding the trajecto-

ries below the threshold. A more systematic correction of the rate constants would

significantly improve the method. Other important issues also have to be resolved.

The assumptions of BXD should be tested separately using simple models, and a

method of error estimation should be developed. Voronoi tesselation can be used

to define the boxes instead of a reaction coordinate.91 The method currently uses

the Langevin equation, so it depends on an unphysical friction constant. Using de-

terministic MD would systematically improve the description of the dynamics. The

present work attempts to benchmark and further develop BXD.

12



Chapter 2

Theory

2.1 Definitions of Useful Quantities

In the energy landscapes view, a “species” is a useful yet artificial concept discretis-

ing the configuration space. A proper definition of species is essential for accurately

describing any process on the landscape. For example, in TPS92 studies of a clus-

ter of Lennard-Jones discs, small spheres in RMSD space surrounding the minima

were used. A convenient definition used in DPS assigns regions in configuration

space to the basins of attraction of particular local minima.4 Dividing surfaces then

roughly agree with the maxima on the transition pathways. However, assignment

of a structure to the corresponding minimum can be computationally expensive

and the number of boxes also corresponds to the number of minima, which grows

roughly exponentially with the number of particles. Another method of partition-

ing the space is Voronoi tesselation in which phase points are assigned to one of the

boxes using a selected measure. As well as partitioning along a collective coordinate,

the Voronoi method seems to be the most convenient for master equation modelling

since it describes all states of the system, so the sum of the populations is conserved

in any process, and in principle it allows an arbitrary number of boxes. The dividing

surface is unambiguously defined and the transmission coefficient is unity (see figure

2.1).

In the master equation, a transition from any state A to a different state B is

assumed to be a Poisson process. Any memory of previous processes is completely

lost. Therefore, a standard distribution of states inside a particular box must be

defined. Any property of species A can be calculated as the mean property of all

states in box A using this distribution. A natural, and perhaps the most convenient

choice, is the equilibrium distribution. A transition from box A to box B can

then be described by an ensemble of trajectories with starting points evenly (in the

13
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Figure 2.1: Comparison of the species definition used in BXD (left) and TPS (right).
Thick full line defines the species, dashed line represents the dividing surface and the thin
line represents a trajectory obtained from a simulation. Points a and b are minima on
the PES. Points c to m divide the trajectories into subtrajectories. Left: All trajectories
crossing the dividing surface (a-c, c-d, d-e and e-f) except for f-g are reactive since at
their ends the particle becomes a different species. The transmission coefficient is unity
for a simulation that ends at the dividing surface (a-f). Right: h-i and l-m are reactive
trajectories and j-k is a non-reactive trajectory. The total population of states at times
the particle is outside the boxes (h-i, j-k, l-m) is lower than at times the particle is inside

either of the boxes (a-h, i-j, k-l).

microcanonical ensemble) distributed in A and endpoints evenly distributed in B.

Now let us define some useful quantities used in the following discussions in

microcanonical ensemble. The box phase volume, ΓA, is

ΓA =

∫
q∈A

1 dpdq =

∫
H(q, A) dpdq , (2.1)

where H(q, A) is one if q lies in A and zero otherwise. The equilibrium probability

of being in box A, PA, is given simply by the ratio of its volume to the total volume

of all the boxes

PA =
ΓA∑
i Γi

. (2.2)

The non-equilibrium population of states in box A at time t is given by

PA(t) =

∫
q∈A
ρ(p,q, t) dpdq =

∫
ρ(p,q, t) H(q, A) dpdq , (2.3)

where ρeq(p,q, t) is the probability of state (p,q) at time t. The probability of being

in box A at time t, which is the central quantity for master equation modelling, is
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PA(t) =
PA(t)∑
i Pi(t)

. (2.4)

For each phase point (p,q) in A we can define the first passage time (FPT)

tfpA→∂AB as the time it takes for the trajectory starting from (p,q) to reach any

phase point in the boundary ∂AB. The flux through the dividing surface between

A and B, ∂AB, at time t can be defined by the population of states as follows: let

us consider a system in which configuration space is divided into two boxes A and

B only. Let all the trajectories leaving B through the dividing surface at time t0 be

reflected back to box B. The rate of change of population of states in B is given by

the flux through the boundary surface ∂AB

FA→∂AB(t0) =
∂

∂t
PB(t)|t=t0 . (2.5)

The normalised flux can be defined in a similar way as:

FA→∂AB(t0) =
∂

∂t
PB(t)|t=t0 =

FA→∂AB(t0)

PA(t0)
. (2.6)

This flux between the boxes in equilibrium is used in TST for the definition of the

rate constants. The rate coefficient κA→∂AB can be defined at time t0 as

κA→∂AB(t0) =
FA→∂AB(t0)

PA(t0)
=
FA→∂AB(t0)

PA(t0)
. (2.7)

Master equation modelling assumes this quantity to be independent of time. If we

assume that the states in B are in equilibrium with the others lying on the same

trajectory at all times, the flux FA→∂AB(t0) is formally equivalent to the reaction

rate vA→B [see equation (1.10)] and κA→∂AB(t0) is the rate constant.

2.2 Limitations of the Reactive Flux Approach

Using the TST rate constants to describe the dynamics in terms of the master

equation faces two main problems. First, a strong dependence on the dividing

surface cannot be corrected by a transmission coefficient if the boxes touch, since

then κ ≡ 1. Second, the evolutions (1.9) and (1.14) may depend on internal barriers

which are disregarded in the TST approach.

Roughness of the Dividing Surface

In TST, the rate constant, which should be an average over the whole box defining

the reactants, strongly depends on the dividing surface, which represents only a
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small subset of the ensemble. Miller argues93 that using the characteristic function

χ for the reaction, the TST rate constant does not depend on the dividing surface.

However, he does not explicitly discuss the definition of species. From the possibility

of many dividing surfaces it follows that species are not defined as touching boxes in

configuration or phase space, as there must be a sufficient gap allowing decorrelation.

B
A

B

} }

d

B
A

B Ɛ

}

δ

Figure 2.2: Left: box A with a smooth dividing surface between A and B. Right: box A
with a rough dividing surface between A and B. kTSTA→B will be higher, even if δ � d.

To illustrate the effect of a rough dividing surface on the dynamics, let us discuss

two systems. First, let us divide a plane into boxes A and B by two parallel lines

of infinite potential (Figure 2.2 left). Without loss of generality, let the potential

energy be everywhere constant in A, V ≡ 0. A point particle moving in A with

velocity u will bounce from either of the walls approximately once in time t = d/u,

where d is the width of box A. Now let us increase the roughness (and therefore the

length) of the dividing surface by lamellae of length δ � d and width ε� δ. We will

observe a series of many (roughly 2δ/ε) bounces separated in time by t′ = ε/u once

in t = d/u. The number of hits per time unit and therefore the apparent reactive

flux will be much higher, but the real evolution of the system should not change

since the change in the definition of species was negligible.

The Effect of Internal Barriers

In region A we can define any number of internal dividing surfaces. Trajectories

starting from states far from the boundary of A must cross many of these inner

surfaces, and these crossings and these crossings could correspond to a much slower

process than the crossing of ∂AB. Region A can contain internal barriers (energetic

or entropic, such as spacial bottlenecks or mazes, see figure 2.3). Hence the mean

passing time through the region can be higher than the time needed for crossing

the final barrier. The equilibrium rate constant does not need to include these
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effects. However, in a description of real dynamics, this neglect is equivalent to the

assumption that the flux through the dividing surface is the rate-determining event

of the whole transition.

B
A

B

B
A

B

Figure 2.3: Left: box A without an internal barrier, where crossing the outer dividing
surface may be the rate limiting step. Right: box A with an internal barrier (maze) with

a low probability of crossing.

2.3 Irreversible Perturbation

For the reasons explained in the previous section, κA→∂AB is rarely independent of

time in real systems. Let us discuss the irreversible reaction (1.6) generalised to

phase space. Let the configuration space be divided into two boxes, A and B. Let

all the microstates of the system be in equilibrium. At time t = 0 we irreversibly

disturb the equilibrium, so that the population of states in box B is zero:

ρ(p,q, 0) ≡ 0 ∀(p,q) /∈ A ,

ρ(p,q, 0) ≡ 1 ∀(p,q) ∈ A .
(2.8)

From time t = 0 we let the system evolve in a way such that no trajectory can leave

box B (Figure 2.4).

Let us assume that box A has some internal barriers and that the dividing surface

between A and B is rough. The P (t) decay will be steeper at low time values because

of surface roughness and slower at high time values because of internal barriers. The

rate constant describing the dynamics during the whole process can be obtained by

fitting the evolution to an exponential function using least squares, leading to the

equation:
∂

∂kA→∂B

∫ ∞
0

(
P (t)− e−kA→∂Bt

)2
dt = 0 , (2.9)
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A B
tA→∂B
fp

∂AB

Figure 2.4: Illustration of the reactive trajectories. Each trajectory starts at a phase
state in A and ends at the boundary of box B. The distribution of trajectories entering B

(normalised flux FA→∂AB) is equal to the distribution of first passage times.

which can be solved numerically. The reactive flux method in this case leads to:

kTSTA→∂B =
F (0)

P (0)
, (2.10)

which is generally different from the expression (2.9) for the rate constant the best

describes the process.

Although the reciprocal of the MFPT is not generally equal to k in equation

(2.9), it can be a good approximation of the rate constant. First, the MFPT in-

volves information about P (t) for all times t. Second, the MFPT often identified

with the “waiting time” is explicitly required by some methods for dynamical sim-

ulation, including the kinetic Monte Carlo94–96 and DPS approach. The MFPT is

the ensemble average of the time it takes for the equilibrium distribution to pass

through the dividing surface:

MFPTA→∂AB =

∫
tfpA→∂AB(p,q) H(p,q,A) dpdq∫

H(p,q,A) dpdq
, (2.11)

where H(p,q,A) is 1 if (p,q) is in A and 0 otherwise. Let us now compare how

rate constants defined as the equilibrium flux and the reciprocal value of the MFPT

fit a non-exponential P (t). A good test function is

P (t) = c1e
−c2t + (1− c1)e−t . (2.12)

Low values of parameter c1 represent small deviations from a strictly exponential

18



Theory

distribution. High values of the parameter c2 represent deviations resulting from

surface roughness, while low values model the effect of internal barriers. From

figure 2.5 it is obvious that the rate constant definition based on equilibrium flux

fails to describe the long-time dynamics even for small deviations. The MFPT rate

constant can be used for very rough surfaces and very high internal barriers (values

of c2 very small or very large, respectively) provided the proportion of the affected

phase space (c1) is small.
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Figure 2.5: Quality of the description of long-time dynamics using TST (left) and MFPT
(right) rate constants as a function of c1 and log(c2) from (2.12) given as the ratio of the
TST (MFPT) rate constants to the rate constant obtained analytically as the solution to
(2.9). Isosurface contours represent values of k 1.5 to 4 times higher for the MFPT and
2 to 12 times higher for TST. The MFPT rate constant generally lies much closer to the

best value.

2.4 A Reversible Reaction

Now let us consider a reversible reaction A 
 B. At time t = 0 we irreversibly

disturb the equilibrium, so that the population of states is distributed according

to equation (2.8). Fitting the evolution (1.14) leads to rate constants that are not

generally consistent with the exit MFPT rate constants derived in the previous

section. It is obvious from figure 2.3 that the change of an infinitesimally small part

of box A does not affect the equilibrium between box A and B but it can affect the

MFPTA→∂AB. Therefore, the rate constants calculated from the exit MFPT will not

have the property (1.16).

The inconsistency originates in the neglect of the penetration time in the cal-

culation of MFPTA→B. The whole transition from box A in equilibrium to B in
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A B

∂AB

tA→∂AB
fp

t∂AB→A
fp t∂AB→B

fp

tB→∂AB
fp

t∂AB→B
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tB→∂AB
fpt∂AB→A

fp

tA→∂AB
fp

Figure 2.6: Illustration of reactive trajectories. Each trajectory starting at ∂AB going
through box A returning to ∂AB can be divided into penetration ∂AB→ A and exit

A→ ∂AB trajectories.

equilibrium can be divided into two consecutive processes. First, trajectories must

leave box A by reaching the boundary ∂AB. Then, they propagate from ∂AB to B,

such that their end points are distributed according to equilibrium probability in B.

All trajectories ∂AB→ A→ ∂AB can be therefore divided into exit and penetra-

tion trajectories. If the phase points in A are in equilibrium with other phase points

lying on the same trajectory in A throughout the whole process, the ratio of leaving

to penetration times is given by the ratio of the corresponding equilibrium fluxes:

FA→B(t)

PA(t)
MFPTA→∂AB =

FB→A(t)

PB(t)
MFPT∂AB→A . (2.13)

The rate constant calculated as

kA→B =
1

MFPTA→B

=
fAB + fBA

fAB (MFPT∂AB→A→∂AB + MFPT∂AB→B→∂AB)
, (2.14)

where fij = Fi→j(t)/Pi(t), gives the correct equilibrium distribution. The reactive

flux approach can give the correct equilibrium properties but the MFPT’s have to

be used for calculating the rate constants.

2.5 Mean First Passage Time from Boxed

Molecular Dynamics

As discussed in the previous section, the MFPT does not generally need to be the

optimal fit of P (t). Provided that a sufficient number of subtrajectories is sampled,

20



Theory

the rate constant of exiting the box can be directly fitted to P (t) obtained from the

simulation as:

P (t) = 1−

∫ t

0

n(τ) dτ∫ ∞
0

n(τ) dτ

, (2.15)

where n(τ) is the number of sampled subtrajectories shorter than τ . However, the

MFPT can be more convenient for the reasons discussed above.

For a sufficiently long trajectory, the ensemble average is equal to the time av-

erage in an ergodic system:

〈X〉 =

∫
X(p,q) dpdq∫

1 dpdq
=

∫
X(p(t),q(t)) dt∫

1 dt
, (2.16)

where X is a quantity defined for each phase state, in our case the first passage

time. The denominator in the latter fraction is simply the time length (evolution

time) of the trajectory, τ . Let us consider two boxes A and B in the configuration

space. The average over box A is

〈X〉A =

∫
X(p,q) H(q,A) dpdq∫

H(q,A) dpdq
=

∫
X(p(t),q(t)) H(q(t),A) dt∫

H(q(t),A) dt
, (2.17)

where H(q,A) is one if q belongs to A and zero otherwise. The denominator is the

time length of the part of the trajectory lying in A.

Calculation of the MFPT proceeds as follows. Propagation of a trajectory can

be started (time t = 0) from any phase state in A. The simulation is stopped

immediately after it hits ∂AB, so it has time length τA→∂AB. The first passage time

is defined for each point as

tfpA→∂AB(p(t),q(t)) = τA→∂AB − t . (2.18)

For all phase states that lie on the trajectory and in box A, we can calculate the

MFPT:

MFPTA→∂AB =

∫ τA→∂AB

0

(τA→∂AB − t) H(q(t),A) dt∫ τA→∂AB

0

H(q(t),A) dt

. (2.19)

Now let us consider a configuration space divided into two boxes A and B, so that
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every trajectory escaping from A ends in B. A and B touch, so the propagation of

the trajectory is stopped at the same time as it leaves box A. The MFPT calculated

from one such trajectory is

〈tfpA→∂AB〉1traj =

∫ τA→∂AB

0

(τA→∂AB − t) dt∫ τA→∂AB

0

1 dt

=
τA→∂AB

2
. (2.20)

For a sample of n trajectories, the MFPT is a time-weighted average of first passage

times

MFPTA→∂AB =

∑n
i=1 τ

A→∂AB
i 〈tfpA→∂AB〉i∑n
i=0 τ

A→∂AB
i

. (2.21)

Combining equations (2.20) and (2.21) gives

MFPTA→∂AB =

∑n
i=1(τ

A→∂AB
i )2

2
∑n

i=1 τ
A→∂AB
i

. (2.22)

The equilibrium (TST) and average (MFPT) rate constants become equal for

exactly exponential distributions of FPT’s. Consistently, formulae (1.25) and (2.22)

then become identical in the limit of an infinite number of sampled trajectories. For

an infinite number of sampled trajectories, we can write equation (2.22) as

MFPTA→∂AB =

k

∫ ∞
0

τ 2 e−kτ

2k

∫ ∞
0

τ e−kτ
=

2k
k3

2k
k2

=
1

k
. (2.23)

Equation (1.25) implies that the MFPT is 1/k:

MFPTTST
A→∂AB =

k

∫ ∞
0

τ e−kτ

2 k

∫ ∞
0

e−kτ
=

k

k2

1
=

1

k
. (2.24)

2.6 Potential Sources of Error

Let us collate the assumptions of classical theories for calculation of rate constants

using the definitions from section 2.1:

1. the motion of electrons and nuclei can be separated (accordingly to the Born-

Oppenheimer approximation),
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2. the motion of nuclei can be described by classical mechanics,

3. the distribution of phase points within a selected box is in equilibrium,

4. the trajectories entering a box are statistically independent of the trajectories

leaving the box,

5. a) the population in each box i is in equilibrium with every other box j,

b) the distribution of FPT’s is strictly exponential,

c) the distribution of FPT’s is a non-increasing continuous function.

Both the method of reactive flux and the MFPT based method presented in this work

require assumptions 1-4 to be valid. Assumption 5.b) is a weaker form of assumption

5.a) and is required by equilibrium flux methods. An even weaker assumption, 5.c)

is required by the MFPT approach used here. An FPT-BXD simulation protocol

that correctly reproduces classical dynamics cannot be in conflict with assumptions

3, 4 and 5 and the sampling must be ergodic.

The inversion procedure used by Glowacki et al.5 can sometimes give incorrect

equilibrium distributions. If the potential energy gradient points towards the box

boundary, BXD trajectories moving almost tangentially to the dividing surface can-

not leave the neighbourhood of the boundary because they are reflected from the

boundary at the same small angle. Such trajectories will unphysically increase the

probability of states close to the boundary and therefore increase the calculated flux.

To allow sampling of trajectories that penetrate deeper into the box, the velocity

directions of all particles should be randomised. A new inversion method is tested

in the present work.

As discussed in section 2.4, BXD simulations in both neighbouring boxes A and

B are necessary to calculate the rate constant corresponding to transitions from A to

B. The sum of the MFPT’s has to be divided into boxes according to the equilibrium

fluxes (2.14). However, without internal barriers the uncorrected and corrected rate

constants can be almost equal. Since the ratio of equilibrium fluxes calculated from

simulations can be inaccurate, the correction can be omitted if the recrossing error

dominates. Such a simplification must be checked by plotting the distribution of lag

times.

If the configuration space is divided into two boxes representing the species

only, the rate constant calculated by fitting P (t) obtained from equation (2.15)

and scaled by equilibrium fluxes using equation (2.15) gives in principle the exact

classical rate constant for the system. However, the efficiency gain of BXD is based

on the possibility of introducing new boxes. Division of the space into more boxes
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results in less assigned volume per box and therefore smaller distances between the

box boundaries. An insufficient distance between two neighbouring boxes can cause

the incoming trajectories to be correlated with trajectories leaving the box. The

decorrelation is one of the requirements of MSM’s (assumption 4 above) and can be

mathematically formulated as

ki→j→k = kl→j→k , (2.25)

where i, k, l are boxes neighbouring box j and ki→j→k is the rate constant kj→k under

the constraint that trajectories can enter box j only from box i. The condition can

be written as

MFPT∂ij→∂jk = MFPT∂lj→∂jk . (2.26)

Here MFPT∂ij→∂jk is the mean first passage time of those trajectories exiting box j

through dividing surface ∂jk, which entered box j through dividing surface ∂ij. Such

data can easily be obtained from FTP-BXD simulations by recording the endpoints

and evolution times of all subtrajectories. This procedure was not possible with

the old formula in which recrossing and the equality of weight of long and short

trajectories in the summation would cause recrossing to artificially decrease the

MFPT∂kj→∂jk compared to other MFPT∂ij→∂jk. Analysis of the correlation in the

simulation can indicate that the box is too small (MFPT∂ij→∂jk < MFPT∂kj→∂jk) or

that the box contains a high internal barrier (MFPT∂kj→∂jk < MFPT∂ij→∂jk).

Even if MFPT∂kj→∂jk = MFPT∂ij→∂jk, the Markovian assumption can be broken

by an inappropriate configuration of boxes. A high internal barrier could spread

throughout more boxes (see figure 2.7). However, such cases will probably not be

commonplace.

A

B

C

∂BC

∂AB

Figure 2.7: Illustration of the correlation error arising from an internal barrier (dashed
line) spread over more boxes. In spite of the fact that no correlation can be implied from
a BXD simulation in box B, the transition from box A to box C will be much smaller
than calculated from a BXD simulation (MFPTA→C > MFPTA→B + MFPTB→C), so
assumption 4 is violated. The method proposed in this section cannot identify such a

pathological case.
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Simulations

Simulations of toy models were carried out to prove the correctness and to test the

efficiency of FPT-BXD for the calculation of rate constants for master equation

(ME) modelling. Variations of a simple two-dimensional periodic potential with a

single minimum per box are used in section 3.1. A many-dimensional generalisa-

tion of this potential is used in section 3.1.4 to demonstrate transferability of the

results to realistic systems with multiple minima per box. FPT-BXD calculation of

rate constants for a cluster of seven Lennard-Jones discs has not yet been success-

ful, for reasons that are understood. The current state of the simulation protocol

optimisation is described in section 3.2.

3.1 Toy Models

3.1.1 Model Properties and Simulation Methods

The dynamics of the transitions between two square boxes in a simple two-dimensional

periodic potential of the form

V (x, y) = cos(2πx) + cos(2πy) (3.1)

were examined. Such a potential has many periodic orbits and the motion in x is

completely independent of the motion in the y direction and vice versa. Therefore,

a randomisation potential was introduced by adding randomisation lines. If such a

line is crossed, the direction of the velocity vector is rotated by an angle uniformly

distributed between 0 and 2π. The line can be physically interpreted as an infinitely

thin wall of alternating charges, which changes the direction of a passing charged

particle. Box A is defined as the region −1 < x < 0 and 0 < y < 1. Box B is

defined by 0 < x < 1 and 0 < y < 1. The boundary conditions can be viewed
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as a simulation on the surface of a torus. A particle exiting box A or B through

the line y = 1 simply enters the same box from the line y = 0, while its velocity

remains unchanged. The boxes have two boundaries, x = 1 (which is in an analogous

way connected to x = −1) and x = 0. The randomisation lines were folded to 5

overlapping circles with radii of 0.2 located at [0.3,0.3], [0.3,0.7], [0.5,0.5], [0.7,0.3]

and [0.7,0.7] in box B and at the equivalent positions in box A.
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Figure 3.1: Evolutions of the populations obtained from the ME simulations for the smooth
(top) and the rough (bottom left) dividing surfaces. The dashed (top) and dotted (bottom)
lines were obtained by fitting the ME evolutions to an exponential function. A steep decay
corresponding to recrossing can be found for the rough dividing surface at small time values
(bottom right). Nevertheless, ME dynamics of the used toy models are exponential even
for high energies (E=0.5). The models are suitable for description in terms of the master

equation.

Classical microcanonical simulations using the velocity Verlet integrator97 with

time step dτ=0.01 were used both for BXD and ME simulations. The ME simulation

here stands for a direct simulation of relaxation of the population of 103 independent

particles in box A from the state in which population in A equals 103 and in B

equals 0. In both BXD and ME simulations, the particles were first equilibrated

in a system comprising both boxes for 104 steps. In ME simulations of the A→ B

transition process, all particles in B were deleted and the system was propagated
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for another 5 · 104 steps. The concentration defined as the number of particles in

box A divided by the number of particles in both boxes was recorded in each step.

The evolution was fitted to an exponential function (1.14). As seen in figure 3.1, the

ME dynamics for the system are exponential even for the rough dividing surfaces

[x = 0.05 sin(20πy) and x = 1 + 0.05 sin(20πy)]. BXD simulations were equilibrated

in the same way. Then, the simulations were constrained in the desired boxes for

another 5 · 104 steps. A particle hitting the dividing surface, for example in case

of the smooth surface x = −1 or x = 0 for box A and x = 0 or x = 1 for box

B, was returned to its previous position and the velocity direction was randomised,

requiring only that the sign of its x component pointed into the box. The statistical

error of each calculated rate constant was estimated as the standard deviation of

values obtained from 15 independent simulations. The simulation protocols were

implemented and vectorised in Octave 3.2.98

The microcanonical TST rate constant was calculated using the RRKM formula

(1.21). Densities of states of both the dividing surface and the box were calculated

numerically and fitted to a polynomial expansion. Each configuration space box was

discretised into a square grid of 106 equally distant points, and the density of states

was calculated for each one for energies between −2 and 2. The integral density of

states g(E) was then fitted with a linear function. The function

g(E) = 3.653 + 4.321E (3.2)

describes the exact g(E) very well for energies between 0 and 0.5. Both the smooth

and the rough surfaces were discretised into grids of points with the distances be-

tween the neighbouring points set to 10−4. The smooth surface can be well described

with the function

g‡(E) = 0.177E (3.3)

for energy values between 0 and 0.5. The integral density of states for the rough

surface can be approximated with a polynomial fit as

g‡(E) = 0.008 + 0.359E + 0.013E2 . (3.4)

The rate constants were calculated as

kTSTA→B(E) = 2× 2π × g‡(E)
d
dE
g(E)

, (3.5)

where the first factor of 2 follows from presence of two dividing surfaces between

the boxes. The numerical result for the smooth surface agrees well with the RRKM
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rate constant in the harmonic approximation:

kHAA→B(E) = Ξ
νηA

ν‡(η−1)

(
E − V ‡

E − VA

)η−1
, (3.6)

which can be calculated for the toy model used in this work as

kHAA→B(E) =
2E

E + 2
. (3.7)

Here Ξ = 1 is a degeneracy factor for the reaction, η = 2 is the number of degrees

of freedom, νA = 1 is the harmonic vibrational frequency in the minimum of box A

with energy VA = −2, and ν‡ = 1 at the harmonic frequency in the lowest energy

point of the transition state ensemble, with energy V ‡ = 0. The factor 2 in (3.7)

follows from the presence of two dividing surfaces (x = 0 and x = −1).

3.1.2 Comparison of the TST and MFPT Approaches
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Figure 3.2: Comparison of ME (the lowest dashed curve) rate constants for the smooth
dividing surface with the rate constants from BXD simulations using the reactive flux
(BXD) and the MFPT (FPT-BXD) formulation and with the exact RRKM (exact TST)

and RRKM in the harmonic approximation (HA TST).

The results for ME and BXD simulations were calculated for energy values 0, 0.1,

0.2, 0.3, 0.4 and 0.5. Since the statistical errors are very small (∆kA→B < 0.005), the

curves can be fitted with cubic splines (figure 3.2). The rate constants calculated

using the old and the new formulations of BXD agree well with the reference ME

data for the smooth dividing surface. The TST rate constants significantly differ

from the reference ME rate constants at higher energies, where crossing the barrier

is not the rate limiting process. The rate constants all converge to 0 as E → 0

and they seem to be consistent for low energies, limE→0 k
i
A→B/k

j
A→B = 1 (figure

3.2). A dividing surface defined by the curve x = 0.05 sin(20πy) (the total length
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of dividing surface ≈ 2.3 instead of 1 in the case of the smooth dividing surface)

was used to demonstrate the large increase of the reactive flux rate constant with

dividing surface roughness. Comparison of the rate constants calculated using the

new and the old BXD formulations and the ME demonstrates that the reactive

flux approach significantly overestimates the rate constant if the dividing surface is

rough (figure 3.3). The old formulation of BXD gives higher rate constants than the

MFPT formulation. The TST rate constant is non-zero for zero energy since the

dividing surface contains points with E < 0.
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Figure 3.3: Dependence of the rate constants on energy for the rough dividing surface.
The exact TST rate constant (dash-dot line) [see equation (3.4)] differs significantly from
the reference ME (solid line) rate constant. The BXD rate constant based on the reactive
flux formulation (dotted line) is generally higher than the FPT-BXD rate constant (dashed
line). Since the statistical error is below 0.005, the data for E=0, 0.1, 0.2, 0.3, 0.4 and 0.5

were fitted with cubic splines.

3.1.3 Uneven Boxes

An asymmetric term was added to study the effect of uneven equilibrium populations

V (x, y) = cos(2πx) + cos(2πy) + 0.2 sin(πx) . (3.8)

The equilibrium constant and the reference rate constants were obtained by fitting

the ME evolution. Exit MFPT’s for boxes were obtained from BXD simulations.

The rate constants calculated from exit MFPT’s using equation (2.14) agree with

the reference ME rate constants (figure 3.4).

The projection of the density of states into configuration space (the probability

distribution of coordinates) was studied for two constraining methods: bouncing

from the wall according to Glowacki et al.5 and randomisation of the velocity di-

rection. As predicted in section 2.6, the inversion procedure by Glowacki et al.5
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Figure 3.4: Comparison of rate constants obtained from FPT-BXD in boxes with potential
(3.8). The relative difference in per cent is given as a function of energy. The statistical
error of all values in the graph is roughly ±3%. Dashed and dotted lines represent the
difference between ME rate constants (reference values) and FPT-BXD rate constants
corrected with penetration times kA→B and kB→A using equation (2.14). The full and the
dashed-dotted lines represent the difference between the ME rate constants and the exit
FPT-BXD rate constants kA→∂AB and kB→∂AB, respectively. The corrected FPT-BXD
rate constants are in very good agreement with the reference ME values throughout the

whole energy range.

artificially increases the population near box boundaries. Randomisation of the ve-

locity direction after hitting the boundary, requiring the x component of velocity to

point into the box, reproduces the correct distribution.

3.1.4 Higher Dimensions

To demonstrate that the above derived results are transferable to PES’s more rele-

vant for molecular systems, a many-dimensional potential of the form

V (p) = cos(2πp1) +
1

n

n∑
i=1

an sin(6πp · ci) (3.9)

was studied, where the parameters ai and ci were selected as random numbers

(uniform distribution) between 0 and 1. In this work, an n = 7-dimensional system

was studied. The box was defined as pi ∈ [0, 1] for each i. The potential has on

average two minima in each dimension per box, so the total number of minima can be

estimated as 27. Simulations show that such a potential does not need randomisation

lines and the population evolution is roughly exponential.

Boxes defined by Voronoi tesselation for complex molecular systems can some-

times lack the funnel-like structure modelled in potential (3.9) with the first term.

Therefore, relaxation to equilibrium for the potential without the cosine term was

also studied. The evolution (figure 3.5) can be decomposed into two exponentials.
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A similar decomposition of species into more types was considered by Bunker and

Hase47;99;100 for different potentials. The decomposition might be used to describe

systems divided into boxes with non-exponential kinetics more accurately in terms

of the master equation.
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Figure 3.5: Decomposition of FPT distributions of passing into two different neighbouring
boxes. Potential (3.9) was used. For energy = 0.2, the weight of the slowly decreasing
exponential is 0.32 for neighbour 1 and 0.31 for neighbour 2. The similarity of the weights

suggests that the box can be subdivided into two phase space boxes.

3.2 Simulation of a Cluster of Lennard-Jones Disks

3.2.1 Characterisation of the System

A cluster of seven Lennard-Jones (LJ) atoms in a two-dimensional plane (LJ2D
7 )

provides a simple model suitable for testing new methods. The system consists

of seven atoms of equal mass interacting with each other through the LJ pairwise

potential,101 having 11 internal degrees of freedom. The phase state of the system

can be described by 14 coordinates: q = (x1, y1, ..., x7, y7), and 14 momenta p =

(px1, py1, ..., px7, py7). The Hamiltonian of the system is

H (q,p) =
p · p
2m

+
6∑
i=1

7∑
j=i+1

4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (3.10)

where rij = ((xi − xj)2 + (yi − yj)2)1/2 is the distance between particle i and j and

m is the mass of each particle. σ (collision radius) and ε (well depth) are the

parameters of the LJ potential defining the reduced units, such as the reduced time

τ0 = (mσ2/ε)1/2. The disconnectivity graph4;102 of LJ2D
7 is shown in figure 3.6.
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Figure 3.6: Minima and transition states of the LJ2D7 system.4;81 Energies are in reduced
units (ε). The index of each minimum in order of increasing energy from the global

minimum is given below each structure.

3.2.2 Implementation

Calculations using boxes defined by minima only gives a good value for the rate

constant k3→2 (transition from minimum 3 to minimum 2, see figure 3.6) but the

other rate constants, such as k1→2, are so low that the simulation would be too com-

putationally expensive. Therefore, the box centres were instead defined as points

on pathways in configuration space between the minima. The pathways were ob-

tained using the doubly-nudged elastic band (DNEB) method103 in the OPTIM104

program. A modified L-BFGS minimiser105 was used for optimisation of the po-

sitions of the images along the path. The points from each path were selected so

that the energy difference between each two following points was always less than

0.6. Redundant points shared by more pathways or very close in energy and RMSD

were removed. In the end, three different configuration space partitionings were

used using 4, 13 and 22 boxes. The structures of the box centres for the partitioning

using 22 boxes with their energies is shown in figure 3.7.

BXD simulations with boxes defined by Voronoi construction are highly depen-

dent on a fast and reliable calculation of the “distance”. Out of the possible distance

measures, RMSD is the most widely used. Finding the optimum structural align-

ment for RMSD calculation with respect to rotational and permutation isomers is

a difficult computational problem. There are efficient algorithms for finding the op-

timum mutual orientation106 for a given permutation and for finding the optimum

permutation107;108 for a given mutual rotation. However, the only known determin-

istic algorithm that ensures convergence to the global minimum of the RMSD with
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Figure 3.7: Structures representing generating points for boxes in the Voronoi construc-
tion. Energies are given below each structure in ε. Some structures are very close to the
neighbouring box centres (RMSD< 0.1) due to the steep potential and the requirement
that energy differences of consecutive generating structures on any path cannot be higher

than 0.5 ε.

respect to both types of alignment is search over all permutations. GMIN109 cal-

culates the RMSD’s quickly by applying a modified Hungarian algorithm108 first,

followed by optimisation of the mutual rotation.

An alternative alignment method was used in this work. The centres of mass of

two planar structures A and B are first positioned to the same point. Structure B is

then rotated by an angle θ and the optimum permutation is found using the mod-

ified Hungarian algorithm.108 For the resulting optimum permutation, the angle is

optimised with the orthogonal transformation using quaternions.106 The application

of the Hungarian algorithm and the angle optimisation is performed for n uniformly

distributed angles θ (from 0 to 2π). The method neither ensures convergence to the

global minimum nor is computationally cheap. However, the premise that a system-

atic search through angles will find the global minimum is supported by a known

solution to a similar problem.110 The method was tested on a set of 489 structures

representing paths between minima calculated using DNEB. The results for n = 20

were identical to the results obtained by the search over all permutations.

The BXD was implemented within the GMIN program109 as a new procedure

BXD2D. Nose-Hoover111;112 and Berendsen113 thermostats were used. The velocity
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inversion after hitting the wall was performed as in Glowacki et al.5 The rate con-

stants for the transition between particular boxes were calculated using the NGT

procedure87 implemented in PELE.114

3.2.3 Preliminary Results

The simulation protocol is currently not optimised to yield results comparable to

TPS calculations.92 Classical simulations in the canonical ensemble of LJ2D
7 system

were performed at T = 0.05 for evolution times of 104 τ0. As mentioned above, the

results for four boxes give values comparable to TPS for k3→2, which is large enough

to be sampled. Therefore, the system must be subdivided into more boxes. The rate

constants calculated from simulations with 13 or 22 boxes are significantly higher

than the TPS rate constants.
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Figure 3.8: The energy profile of the transition from minimum 1 (the global minimum)
to minimum 2. The RMSD between each point of the path and minimum 1 is calculated

using the new method described in section 3.2.2.

The check for Markovianity proposed in section 2.6 showed that the input and

output trajectories are strongly correlated in case of the partitioning into 22 boxes.

First, the system is too simple to sufficiently decorrelate the input and output tra-

jectories. It is obvious from figure 3.7 that the RMSD’s between some box centres

are very small. The energy increases very quickly with RMSD (5 ε/σ, see figure

3.8) along the transition path from minimum 1 to any other minimum. Second,

as mentioned in section 2.6, the inversion procedure by Glowacki et al.5 does not

preserve the equilibrium distribution and significantly increases the number of the

inversion events. Randomisation of velocities is more difficult to implement for this

system. These problems will hopefully to be resolved in the near future.
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Conclusions and Future Work

In this work, a new formula for calculating rate constants by boxed molecular dy-

namics simulations is presented. The formula is based on the concept of first passage

times defined in the phase space and makes use of the fact that each trajectory of

non-zero time length contains an infinite number of phase points for averaging. A

theoretical formalism is developed and it is shown that the present approach does not

require the assumption of strictly exponential relaxation. Toy models were used to

demonstrate that constraining does not disturb the equilibrium distribution within

the box and that FPT-BXD provides good rate constants for modelling in terms

of the master equation. The exact TST rate constants were shown to agree with

the exact classical rate constants for high energy barriers. A method for estimating

non-Markovian behaviour has been proposed. Other approaches for rate constant

calculation might also benefit from the proposed sampling formula. For example, in

forward flux sampling,115;116 the MFPT can be used instead of the equilibrium (reac-

tive flux) formulation for the calculation of the escape rate from the box representing

the reactants.

The previous BXD method5 can be used to accurately reproduce the thermo-

dynamics of rare events if a proper velocity inversion procedure is employed, but

the FPT-BXD must be used to simulate dynamics of the system. The space can

be split into many boxes and the system can be simulated in terms of the master

equation, or the rate constants of transitions between selected boxes can be calcu-

lated by a graph transformation method.87 Apart from robustness with respect to

dividing surface roughness, and properly including the effect of internal barriers,

the newly developed method can be used for boxes with dividing surfaces that do

not correspond to high energy barriers, which is often the case for physical systems

of interest. The method also uses deterministic MD, so it does not depend on a

phenomenological friction constant.
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Preliminary results for FPT-BXD simulations of an LJ2D
7 cluster with boxes de-

fined by Voronoi construction show that small boxes can result in high correlation

between the input and output trajectories. Steep energy barriers can make partition-

ing of the configuration space into boxes to provide efficient sampling difficult. In

further studies, we plan to further benchmark and optimise the simulation protocol:

� The most important short-term aim is to develop an inversion procedure that

correctly reproduces the equilibrium flux and MFPT’s. The inversion proce-

dure could be then also used to simulate small neighbourhoods of stationary

points efficiently in order to correct the TST rate constants including anhar-

monicity. An entirely different initialisation procedure, such as using points

from the simulation not located at the boundaries, can be used as a reference.

� More complicated toy models, such as the PES of a collinear atom transfer

reaction,117 can be used to gradually proceed from one particle in two dimen-

sions to more realistic systems. Models with steep barriers and increasingly

complex landscapes can be used to study the efficiency limits of the method.

� There is much scope for further theoretical development. Understanding how

to divide the configuration space boxes into a larger number of phase space

boxes with efficient determination of the rate constants using FPT-BXD would

also broaden the applicability of the method.

� FPT-BXD can be coupled with hyperdynamics74 in order to sample deep

minima without partitioning the configuration space of system into more boxes

along transition paths.

� Simulations of LJ2D
7 have shown that the selection of the boxes affects the

efficiency of the rate constant calculation. Boxes were defined by box centres

used in Voronoi tesselation. In weighted Voronoi tesselation, the partitioning

depends also on ad hoc parameter w(i, j) [see equation (1.24)] defined for each

pair of boxes. We currently use w(i, j) ≡ 1 for every pair. Automatic on-the-

fly modification of this parameter in order to achieve comparable MFPT’s in

neighbouring boxes can increase efficiency of the algorithm. Box centres could

be defined by a method similar to the one used by Chodera et al.13 for large

systems.

In future, we plan to apply the method to interesting systems:

� Application to three-dimensional clusters requires a reliable and fast structural

alignment procedure. The currently implemented algorithm for 2D alignment
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can be generalised for finding the optimum permutation-rotations isomers in

3D. The golden section spiral algorithm can be used for finding evenly dis-

tributed points on a sphere.118

� The alanine dimer could serve as a good system for benchmarking the method.

Trp-cage and other similar small peptides can be used as test systems and then

larger proteins can be studied.

� The dynamics of large proteins can be simulated with FPT-BXD, perhaps in

combination with some recently developed rigidification algorithms.119;120 The

dynamics of protein conformational transitions and protein folding are being

studied extensively121;122 and FPT-BXD has the potential to contribute.
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