
INSTITUTE OF CHEMICAL TECHNOLOGY, PRAGUE

Faculty of Chemical Engineering

Department of Chemical Engineering

MASTER THESIS

Development and application of computational

methods for decomposition of large reaction

networks and determination of their stability

Author: Boris Fačkovec

Supervisor: prof. Ing. Igor Schreiber, CSc.

Consultant: Ing. Otto Hadač, PhD.

Study program: Process Engineering and Informatics

Study subprogram: Chemical Engineering, Bioengineering

and Mathematical Modeling

Year: 2012



replace this page with thesis

assignement (received from your

supervisor)



This thesis/dissertation was written at the Department of Chemical Engineering of the

Institute of Chemical Technology in Prague between October 2010 and August 2012.

I hereby declare that this thesis is my own work. Where other sources of information

have been used, they have been acknowledged and referenced in the list of used literature

and other sources.

I have been informed that the rights and obligations implied by Act No. 121/2000

Coll. on Copyright, Rights Related to Copyright and on the Amendment of Certain

Laws (Copyright Act) apply to my work. In particular, I am aware of the fact that the

Institute of Chemical Technology in Prague has the right to sign a license agreement for

use of this work as school work under §60 paragraph 1 of the Copyright Act. I have also

been informed that in the case that this work will be used by myself or that a license

will be granted for its usage by another entity, the Institute of Chemical Technology

in Prague is entitled to require from me a reasonable contribution to cover the costs

incurred in the creation of the work, according to the circumstances up to the full

amount.

I agree to the publication of my work in accordance with Act No. 111/1998 Coll. on

Higher Education and the amendment of related laws (Higher Education Act).

In Prague on August 17 2012

2



SUMMARY

Complex reaction networks (CRN) prove to be excellent models for complex chemical

systems like chemical reactors or cellular compartments. Dynamics of the modeled sys-

tem can be studied qualitatively using graph theoretical methods and convex analysis.

In this work, methodology for qualitative analysis of CRN is developed and imple-

mented in MATLAB/Octave. Emphasis is put on comfort of the user and developer,

i.e. on straightforward usage and lucidity of the code. Program for decomposition of a

network into extreme pathways and for determination of their stability is implemented

based on literature. Algorithm for automatic classification of potential oscillators is

invented and an efficient genetic algorithm for finding Hopf bifurcation is proposed.

The developed software is used to analyze 5 representative relevant CRN models.

3



ACKNOWLEDGEMENT

I would like to thank to my supervisor prof. Igor Schreiber for introducing me into

the topic and for devoted guidance and help. My work would be unthinkable without

personal support of my beloved girlfriend.

4



Contents

1 INTRODUCTION 7

2 THEORETICAL PART 8

2.1 Chemical Reaction Networks . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Stoichiometric Network Analysis . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Classification of Chemical Oscillators . . . . . . . . . . . . . . . . . . . 12

3 COMPUTATIONAL PART 14

3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Stoichiometric Matrix Converter . . . . . . . . . . . . . . . . . . 14

3.1.2 Decomposition into Extreme Pathways . . . . . . . . . . . . . . 14

3.1.3 Stability of Extreme Pathways . . . . . . . . . . . . . . . . . . . 15

3.1.4 Classification of Potential Chemical Oscillators . . . . . . . . . . 15

3.1.5 Identification of Hopf Bifurcations . . . . . . . . . . . . . . . . . 17

3.2 Mitogen-Activated Protein Kinase Cascade . . . . . . . . . . . . . . . . 20

3.3 Continuous Flow System of H2O2 - S2O32- - SO32- . . . . . . . . . . . 23

3.4 Oscillations of Hydrogen Peroxide in the Atmosphere . . . . . . . . . . 26

3.5 Modified Belousov-Zhabotinsky System . . . . . . . . . . . . . . . . . . 28

3.6 Chemical Reactors with Mass Transfer . . . . . . . . . . . . . . . . . . 33

4 DISCUSSION AND CONCLUSIONS 34

BIBLIOGRAPHY 36

LIST OF ABBREVIATIONS 38

APPENDICES 39

A Documentation for the function edgeSearch 39

A.1 Dependency diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A.2 Main function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A.3 Local function fproduceZeros . . . . . . . . . . . . . . . . . . . . . . . 42

A.4 Local function fcombine . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.5 Local function fiterCheck . . . . . . . . . . . . . . . . . . . . . . . . . 44

A.6 Local function fcheck . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

B Documentation for the function stability 47

B.1 Dependency diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.2 Main function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.3 Local function fsafeTime . . . . . . . . . . . . . . . . . . . . . . . . . 48

5



C Documentation for the function oscilClasses 50

C.1 Dependency diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

C.2 Main function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

C.3 Local function fold2new . . . . . . . . . . . . . . . . . . . . . . . . . 53

C.4 Local function fcycFinder . . . . . . . . . . . . . . . . . . . . . . . . 53

C.5 Local function fextendCycle . . . . . . . . . . . . . . . . . . . . . . . 56

C.6 Local function flinkFinder . . . . . . . . . . . . . . . . . . . . . . . 57

C.7 Local function fareLinked . . . . . . . . . . . . . . . . . . . . . . . . 59

C.8 Local function fcycType . . . . . . . . . . . . . . . . . . . . . . . . . 61

C.9 Local function fexitFinder . . . . . . . . . . . . . . . . . . . . . . . 62

C.10 Local function fdecide1BC . . . . . . . . . . . . . . . . . . . . . . . . 64

C.11 Local function fdecide2BC . . . . . . . . . . . . . . . . . . . . . . . . 66

C.12 Local function fZFinder . . . . . . . . . . . . . . . . . . . . . . . . . 67

C.13 Local function fextendPath . . . . . . . . . . . . . . . . . . . . . . . 69

C.14 Local functions fv2r, fv2p, fp2vand fr2v . . . . . . . . . . . . . . . . 70

D Documentation for the function hopfSearch 71

D.1 Dependency diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

D.2 Main function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

D.3 Local function fmutate . . . . . . . . . . . . . . . . . . . . . . . . . . 73

D.4 Local function fcrossover . . . . . . . . . . . . . . . . . . . . . . . . 73

D.5 Local function fSortThem . . . . . . . . . . . . . . . . . . . . . . . . . 75

D.6 Local function fcompareThem . . . . . . . . . . . . . . . . . . . . . . . 76

D.7 Local function fgenerate . . . . . . . . . . . . . . . . . . . . . . . . . 76

D.8 Local function ffitness . . . . . . . . . . . . . . . . . . . . . . . . . 77

6



1 INTRODUCTION

Reaction networks are familiar to all chemists. If the size or structure of a studied

network gives rise to complexity beyond the limits of chemical intuition, a rigorous and

systematic approach has to be followed. Size of such ”too complex” systems can be

surprisingly small. Simple Oregonator model comprising only 5 reactions and 3 species

can exhibit interesting dynamic properties. Belousov-Zhabotinsky reaction, which can

be well modeled by a network comprising 12 reactions [1] used to puzzle many chemists

and physicists for a long time. For its challenging underlying theory the field has been

for years attracting mathematicians and physical chemists.

For chemical engineering applications, knowledge of chemical systems dynamics is of

great importance. Based on a good mechanism, operation conditions for an industrial

reaction can be set in order to optimize some desirable properties, such as maximum

yield or minimum production time. Investigation of steady states of isothermal reactors

and their stabilities is an important step in reactor design. Reaction networks can very

well describe even heterogeneous reactions and continuous flow can be modeled by

pseudoreactions.

In molecular biology, the advent of high throughput technologies has caused shift

from reductionist dissection to systems integration in the past ten years. Methods of

qualitative analysis of metabolic networks have been becoming increasingly popular

among biochemical community. Metabolic networks present one level in hierarchy of

understanding life. Together with protein and RNA folding and binding, they stand

for paradigm shift from machines operating according to well known rules to living

creatures with ”elan vital”. Therefore, it is plausible to assume that in near future, the

field of biochemical network analyses will flourish.

The main contribution of this work is a software pushing the limits of thorough

qualitative analyses of complex reaction networks to models composed of tens of reac-

tions by automatization of the data analysis process. Analyses of selected models are

shown to illustrate capabilities of the developed software. Therefore, the most worked

part of this publication is documentation to the programs written so that it should be

easy to use and modify. My hope is that the outcomes of this work will prove useful to

investigators searching for simple useful code.

7



2 THEORETICAL PART

2.1 Chemical Reaction Networks

Chemical reaction networks are simplified discretized models of complex chemical pro-

cesses. They rely on 3 levels of approximations. First, Born-Oppenheimer approx-

imation must be made to introduce the concept of potential energy surface (PES).

Second, chemical species are loosely defined as regions on PES separated from other

species (regions on PES) by a barrier in the magnitudes of tens to hundreds kcal/mol.

Uncountable number of structures slightly differing in soft degrees of freedom 1 are

represented by single species with its unique chemical formula. Transition states are

represented by saddle points on PES dividing regions corresponding to species and

chemical reactions are bundles of paths connecting these regions.

The third level of approximations is deciding which species and reactions to consider

in our CRN model. The number of species grows exponentially with the number of

comprising atoms and the number of all possible reactions grows approximately with

square of the number of species. It must be decided, which intermediates to include

and which chemical reactions are This level of approximation is in chemistry called

constructing the reaction mechanism.

It is worth to mention here that since paths on PES are not oriented curves, all

reactions are in principle reversible. However, if free energy of products is lower than

that of reactants by decades of kJ/mol, backwards reaction can be negligibly slow, since

energy barrier is increased by that value. At room temperature, free energy difference

of about 6 kJ/mol is equivalent to about 10-fold decrease in reaction rate. Therefore,

reactions can be considered as oriented paths from reactants to products, which has

significant implication for their modeling.

These approximations lead to description of a real chemical systems by system of

ordinary differential equations (SODE).

ẋi = fi(x1, x2, ...); i = 1..m (1)

wherem in number of species, xi is concentration of ith species. fi is function of con-

centrations, which is generally non-linear and can be written as a sum of contributions

of all reactions which species i participates.

fi =
r

∑

j=1

νijvj (2)

where νij is stechiometric coefficient os species i in jth reaction, r is number of

reactions and vj is rate of jth reaction defined by kinetic equations. If the model

1is usually the term for bond angles and torsional angles. In the context of this work, all changes
of internal coordinates not causing breakage of any covalent bond.

8



consists of elementary reactions, the kinetic equations are monomial, i.e. they have the

form

vj =

m
∏

k=1

kk x
νL
kj

k (3)

where ki is rate constant independent of concentrations of species and νL
ij is order

of reaction j with respect to species i. So that SODE has the form

fi =

r
∑

j=1

νij

m
∏

k=1

kk x
νL
kj

k (4)

Such kinetics is also called power law kinetics.

Evolution of system (1) can be computationally studied, so that dynamical behavior

of the system can be predicted and engineered. There are multiple levels of studying

dynamics of CRNs. First, one desired trajectory in phase space can be evolved by

numerical integration of the equations using for example Runge-Kutta method or a

suitable predictor-corrector scheme. Second, it has been shown that stochastic modeling

can be sometimes considerably more efficient [2]. Third, more general approach is a

qualitative analysis using bifurcation diagrams. Finally, it has been shown that CRNs

possess some inherent properties following from the network topology, so CRNs can be

qualitatively studied without the knowledge of rate constants. For this purpose, graph

theory and complex analysis proved useful.

From mathematical point of view, CRN is an oriented weighted hypergraph2. Var-

ious representations of such structure have been proposed, for example the species-

reaciton graph or directed bipartite graph [3]. Another representation is by stoichiomet-

ric matrix ν, which contains overall stoichiometric coefficient of species i in jth reaction

in field νij, so it is integer matrix for network of elementary reactions. Construction

of such matrix obviously comes with loss of kinetic information, because a catalyst

species is omitted. Therefore, stoichiometric matrix must be complemented with a

kinetic matrix defined as

κij =
∂ log vj

∂ log xi

(5)

to represent the system. If non-multiplied elementary reactions are considered, ki-

netic matrix is identical to left stoichiometric matrix ν
L, which is (in case of elementary

reacti7ons) a positive integer matrix having absolute value of stoichiometric coefficient

of reactant i in jth reaction in field ν
L
ij . Analogically, there is a right stoichiometric

matrix ν
R. Stoichiometric matrix is simply their difference ν = ν

R − ν
L.

CRN can be portrayed in a network diagram like one in the Figure 2.1. Each species

is represented by its formula and each reaction by a branched arrow marking from

2hypergraph = generalization of a graph, edges connect more than 2 vertices

9



Figure 1: Diagrammatic representation of chemical reaction networks - illustration by
simple examples. a) A → B b) 2 ( A → B ) c) 2 A → 3 B d) 2 A → 3 A

A B

A B

A B

A
a)

b)

c)

d)

reactants to products. Barbs on the heads and feathers on the tails of arrows represent

kinetics and stoichiometry. Convention fo arrow heads is straightforward; the number

of barbs is equal to coefficient of the product in right stoichiometric matrix. Convention

for arrow tails is a little more complicated, since left stoichiometric matrix is generally

not equal to kinetic matrix This is beacuse in current diagrams, it is convenient to

multiply reactions, for example 2 ( A → B ), which is not the same as 2 A → 2 B.

The former denotes two reactions with first order kinetics, while the latter denotes

one reaction with second order kinetics with respect to A. Therefore, arrows on the

left side are reserved for kinetics and Examples of reactions and their diagrammatic

representation are in Figure 2.1. If stoichiometric coefficient of a reactant is 1, as

well as its coefficient in kinetic equation, there is an exception allowed - no feather

is necessary. Such approach can cope with integer kinetics only and proves useful in

diagrams of extremal pathways to indicate that some reactions are used multiple times.

In most diagrams in this thesis, the convention for left and right side of arrow tails is

ignored unless stated otherwise.

Because of appropriateness of the aforementioned approximations, the SODE in-

duced by a CRN can very well describe the dynamics of the represented chemical

system. Their suitability for modeling metabolic pathways has been recognized by

biochemical community. Many reviews of network analyses for biochemists have been

published in the last decade [4–6]

2.2 Stoichiometric Network Analysis

Stoichiometric network analysis (SNA) is a qualitative approach to studying dynamics

behavior of complex reaction networks (CRNs) or other systems with stoichiometry.

Stability of steady states can be examined with no knowledge of rate constants of

constituent equations. The methodology was established by Bruce L. Clarke in 80’s

[7]. Since that time, it has been successfully applied to a variety of useful models, for

example see work by our group [8]. The first step is finding the basis of manifold of

stationary states in reaction rate space called current cone3. This set of reaction rate

3reaction rate vector in analogy with Kirchhoff law called current

10



vectors e has to satisfy two conditions.

1. All e have to lie in null space of stoichiometric matrix ν

ν e = 0 (6)

2. All e lie in positive orthant4 of the reaction rate space.

The second condition is the consequence of orientation of reactions from reactants

to products and physical constraints on concentrations, which must be positive. These

two conditions result in positive definiteness of reaction rate vectors.

Elements of convex basis (or simply edges) of current cone are called extreme cur-

rents or extreme pathways. In the following text, the latter term will be preferentially

used to emphasize graph theoretical approach to the problem. An another concept

providing intuitive insight into meaning of extreme pahtways are elementary flux modes.

An elementary flux mode is element of basis for all subsets of the CRN hypergraph in

which no species is in sum consumed or produced. Set of extreme pathways is a subset

of set of elementary modes [9]. Such subsets are easy to imagine and picture. For

example, each reversible reaction represents 1 extreme pathway.

Around each steady state x0, SODE (Equation 1) can be linearized using Taylor

expansion. In vector notation

ẋ = f(x0) + J(x− x0) (7)

where f(x0) = 0 is a steady state condition and J is Jacobian matrix defined as

Jij =
∂fi

∂xj

(8)

It can be shown that Jacobian matrix of the system can be written as

J = ν diag(e) κ|T
x0

(diag(x0))
−1 (9)

where ν is stoichiometric matrix, e is an element of current cone, x0 is concentration

vector and κ|
x0

is kinetic matrix evaluated in the steady state x0.

(κ|
x0
)ij =

∂ log vj(x0)

∂ log xi

(10)

where vj(x0) is jth equation in the setady state. If a CRN follows power law kinetics,

kinetic matrix is equal to left stoichiometric matrix. Then the product can be separated

into two parts, first of which does depend only on stoichiometry

B = −ν diag(e) κT (11)

4orthant = generalization of quadrant to more dimensions

11



and the second one ((diag(x0))
−1) representing a particular steady state.

A steady state is stable if all the eigenvalues of Jacobian matrix evaluated in this

steady state have negative real values. Clarke showed that this is true if none of the

principal subdeterminants of B 5 is negative. Indices determining the subdeterminant

correspond to species playing key roles in destabilization of the network e. These

species will be referred to as deteminant-indicated.

2.3 Classification of Chemical Oscillators

Theoretical approach described in the previous chapter leads to list of extreme pathways

with their determinant indicated metabolites if unstable. If the system can oscillate,

categorization of this oscillator leads to useful implications for its dynamics. Con-

siderable amount of work has been done to systematize chemical oscillators [10–14]

integrating various approaches, such as in situ dynamics observations, bifurcation

analyses [15], network diagram analyses and stability analysis described above. Such

systematization helps to experimentally determine their mechanism and to predict their

dynamical properties.

Clarke [7] classified current cycles in chemical reaction networks as strong, critical

or weak if the principal subdeterminant of matrix B defined by the species forming

the cycle is negative, zero or positive respectively. In strong, critical and weak cycles,

output reaction is of lower, equal and higher order than the cycle. In seminal paper by

Eiswirth et al., four qualitatively different cases of unstable networks are distinguished.

1. networks that contain a critical current cycle and a suitable destabilizing reaction

2. networks that contain a strong current cycle

3. autocatalytic ring networks

4. others, yet undescribed

The first case gives rise to category 1 of chemical oscillators and the second case

to category 2. Category 1 is subdivided into 3 classes, 1B and 1C, wich is subdivided

into 1CX and 1CW. Category 2 can be also divided into 2B and 2C subcategories. The

distinction between B and C subcategories is particularly important. Since 1C and 2C

subcategory oscillators involve input feedback, they are crucially dependent on inflow.

1B and 2B subcategory involve output feedback and therefore can oscillate in batch

mode. Therefore the symbols B (batch) and C (continuous).

5principal subdeterminant of matrix B of size m defined by vector v is a determinant of matrix
C constructed such that Cij = Bvivj . Ina MATLAB notation C = B(v,v) . The number of such

subdeterminants is combination number

(

n

m

)

, where n is size of matrix B .

12



Figure 2: Prototypes of network diagrams of models of category 1. LEFT: Category
1B. RIGHT: Category 1CX. Adapted from ref. [15].

X Y

Z

X YZ

Figure 3: Prototypes of network diagrams of models of category 2. LEFT: Category 2B.
RIGHT: Category 2C. 2 feathers do not stand for stoichiometric coefficient 2. Adapted
from ref. [15].

X Z
XZ

In the oscillators, some species play special roles. The main classification of species

distinguishes essential and non-essential species. Their definition follows from proper-

ties of Jacobian matrix and is discussed in ref [10]. Species have also symbols charac-

terizing their roles in the oscillator. Autocatalytic species X forms the autocatalytic

cycle. There might be many X species on a cycle. Exit species Y reacts with X, so it

decreases its concentration. Recovery species W found in oscillators of category 1CW

is formed by exit reaction and reacts with Y. Species of type X, Y and W are indicated

by determinant while feedback species Z is not. Phase relations of species of type X,

Y and Z have been described [14].

13



3 COMPUTATIONAL PART

3.1 Implementation

3.1.1 Stoichiometric Matrix Converter

react2mat.py , written in python, presents just a user-friendly interface for construc-

tion of stoichiometric matrices. The script was developed in order to avoid tedious

work susceptible to human error. Instead of careful filling fields in a table editor (e.g.

gnumeric) user writes down the equations in human readable form. Guidelines for input

file are briefly described in the source code. Output of the script are

• stoichiometric matrix

• left stoichiometric matrix

• right stoichiometric matrix

• kinetic matrix if it is identical to left stoichiometric matrix

The script also creates log file, where all the metabolites and reactions are numbered.

3.1.2 Decomposition into Extreme Pathways

Decomposition of reaction network into basis is the first step of stoichiometric network

analysis. Extremal pathways are here calculated by program based on algorithm

proposed by Schilling and Palsson [16]. The original implementation takes into account

exchange fluxes, which are not used in our analyses and therefore are not implemented

in our version.

The iterative algorithm follows the principles of algorithms for finding the extremal

generating vectors of convex polyhedral cones. In the first step of each iteration, the

algorithm creates a temporary matrix by combining all temporary edges6 having posi-

tive number in specified fields with those having negative numbers in those fields. This

matrix is then substantially reduced in the second step by identification of redundant

temporary edges by pairwise comparison. A temporary edge is considered redundant

if its indices of zero fields are subset of indices of zero fields of any another temporary

edge. Because of the second step, the original algorithm scales with square of the size

of matrix of temporary edges with redundant ones. The total number of iterations is

equal to the number of metabolites.

The program is implemented as MATLAB/Octave function and takes only stoichio-

metric matrix on input and returns matrix of extremal pathways sorted according to

number of reactions. The algorithm was implemented with two notable enhancements.

6In the last iteration, edges are obtained by deletion of part of these vectors. Therefore, they are
”almost” edges or in this thesis referred to as temporary edges.

14



First, iterative performing of the second step (check of temporary edges for redun-

dancy) reduces formal scaling to linear with respect to the number of temporary edges

with redundant ones. Vectors are randomly divided into bins and checked for redun-

dancy inside If the number of identified redundant vectors is higher than a predefined

tolerance, anothe iteration is performed. The procedure has two parameters - bin size

and the number of found redundant vectors after which the iterative procedure ends.

Performing the procedure until zero new redundant vectors are found is meaningless,

since it does not ensure that no such vector is present in the temporary edge matrix.

User does not need to enter these parameters, default values seem to perform well for

systems comprising tens of reactions.

Second, memory is saved by storing the matrix as sparse matrix. This is done very

easily in MATLAB language, so lucidity of the code was not negatively influenced.

3.1.3 Stability of Extreme Pathways

Implementation of network stability analysis is straightforward. Since the number

of principal subdeterminants can be prohibitively large, any procedure resulting in

their decrease is welcome. A simple time-saving procedure was implemented. It uses

advantage of the fact that the matrix B defined by Equation 11 usually contains many

zero columns and rows. If ith column AND ith row are zero for any index i, these

are not considered when principal subdeterminants are constructed. This modification

decreases time spent on calculation of stability of one extreme pathway from m! to

(m-z)!, where m is number of metabolites and z is numbed of indices i satisfying the

aforestated condition.

3.1.4 Classification of Potential Chemical Oscillators

Unlike the previous 2 programs, this program is original contribution of this work; to

our knowledge, there is no software of that kind. Need for automatized classification of

unstable steady states is suggested in the previous chapters. We are interested only in

categories 1 and 2 and their subcategories B and C. We naturally cannot study ”other”

yet undescribed cases. Admittedly, there have been notions of new prototypes of oscil-

lators since the classification was published [17]. However, relationship between their

network topology and dynamic properties have not been studied yet, so classification

would be pointless at this stage.

In order to algoritmize classification, unambiguous conditions for classification must

be formulated. In our program, oscillators of categories 1B, 1C, 2B and 2C were

classified based on conditions following from network topology of their prototypes

and their roles in stability analysis (chapter 2.2). Skeleton prototypes of particular

categories of potential oscillators are in Figures 3.1.4 and 3.1.4.

1. Species is indicated by determinant iff it is either of type X or of type Y or of

15



type W7.

2. X species form a strong cycle or a critical cycle with exit reaction with Y species.

Remaining determinant indicated species (if any) must be of type W.

3. The cycle can branch, but all species involved in the cycle from which category

is derived are of type X.

4. In networks of category 1B, Y species cannot be produced directly by autocat-

alytic cycle. At least one Z species must be between. Maximum number of Z

species connecting Y species (or just exit reaction in case of 2B category) with

autocatalytic cycle is not defined.

5. Only one strong cycle or a critical cycle with suitable exit reaction is present.

Figure 4: Prototypes of potential oscillators of category 1 used in our classification
algorithm. LEFT: category 1B. RIGHT: category 1C.

X Y

Z

X Y

Figure 5: Prototypes of potential oscillators of category 2 used in our classification
algorithm. LEFT: category 2B. RIGHT: category 2C.

X Z X

The function takes an unstable steady state, set of determinant indicated species,

kinetic and left and right stoichiometric matrices on input. In order to assign this input

set a category, it performs the following operations.

7Definitions of species in prototype subnetwork is given in ref. [14].

16



1. Identify all the cycles composed of determinant indicated species.

2. If there is more than 1 cycle, determine (for each pair of cycles) whether there

are links between them. If yes, merge the into 1 cycle.

3. Calculate strength of the cycles. If there is a strong and a critical cycle, consider

strong one for following calculations. If there are more cycles of the same strength,

choose any of these cycles and raise warning (according to assumption 5, only one

cycle should be present).

4. If there are two or more critical cycles and no strong cycles, check for suitable

exit reaction. Omit those without exit reaction with an another determinant

indicated species. If more fulfiling the condition rising from assumption 5, raise

warning.

5. Identify Y and/or Z species. There should be only 1 Y species in an oscillator of

category 1 and no Y species in category 2.

It is entitled classification of potential oscillators because sole instability is not

sufficient for oscillatory behavior. Some extreme pathways may involve the prototypes

shown in Figures 3.1.4 and 3.1.4 and do not oscillate in the same time.

3.1.5 Identification of Hopf Bifurcations

Instability of an extremal pathway does not necessarily imply oscillatory behavior.

Supercritical Hopf bifurcation is a strong indication of possibility of ocillations. To

our knowledge there has been no method of determining whether system can under

some conditions undergo Hopf bifurcation solely from network diagram yet. Therefore,

concentration vector fulfiling conditions of Hopf bifurcations has to be found. Another

original contribution of this work is an algorithm finding such vector in a reasonable

time. The heuristic algorithm can positively answer the question, whether the system

can exhibit supercritical Hopf bifurcation. Failure to converge in finite time does not

ensure that the extremal pathway cannot oscillate under any conditions.

Random search in concentration manifold can be extremely time consuming because

the region of Hopf bifurcations can be very small. Therefore, a fitness function guiding

the search to the right direction has to be developed. The fitness function results from

the following requirements for the creation of system of closed orbits in the phase space

According to Hopf’s theorem, there are another 2 conditions for creation of an isolated

system of closed orbits in phase space. However, these seem to be usually fulfilled in

most chemical systems8.

8Of those asymptotical stability of the steady state is worth to mention. For more theory of
bifurcations, see textbook [18].

17



1. Concentrations of essential species need to be smaller than those of other species.

2. Jacobian matrix of the system needs to have one pair of imaginary eigenvalues.

3. The rest of the eigenvalues of Jacobi matrix need to have negative real parts.

The fitness function is composed of 3 contributory functions. First, absence of

complex eigenvalues is penalized. If the Jacobi matrix corresponding to evaluated

concentration vector has no complex eigenvalues, a contribution to fitness function

is calculated based on likelihood of the vector to acquire complex eigenvalues when

changed a little. The function uses advantage of the fact that a pair of roots must

become become equal before it becomes complex. Therefore, minimizing separation

of the closest pair of roots leads to the desired result. This contribution smoothly

(exponential function) depends on this minimum separation of 2 closest eigenvalues.

Second, if there are complex eigenvalues, positive real part of any other eigenvalue

Re(q) is penalized by its exponential −eRe(q). The penalization is sum of penalizations

for all positive eigenvalues smoothly increasing with the value of the corresponding

eigenvalue. Third, real parts of complex eigenvalues needs to be close to 0. This last

contribution depends on ratios of imaginary and real parts of complex eigenvalues.

The aforedescribed fitness function is non-linear and based on 3 non-related condi-

tions which can cause in local minima, discontinuities and traps. Therefore, a robust

algorithm converging to global minimum has to be used. We use genetic (differential

evolution) algorithm. Evolution diagram of the algorithm is in Figure 3.1.5.

First, vectors are randomly generated so that concentrations of essential species is

lower than those of the other species. The same subroutine is later used for generating

new vectors enriching genofond of the evolving population. Then in each generation,

each vector is exposed to mutations and based on fitness function, it is decided between

the original vector and its mutant. The resulting set of vectors is enriched with newly

generated random vectors and randomly mixed (crossover). The crossover is performed

as random linear combinations of randomly chosen pairs of vectors. Offspring is sorted

according the fitness function and the highest scoring individuals are selected for the

next step. The algorithm terminates when it enters the region of concentration vectors

fulfilling the conditions.

Program is implemented as MATLAB/Octave function. The algorithm has 18

parameters, which can be easily modified by the user via function arguments. Doc-

umentation for the program can be found in Appendix E.

18



Figure 6: Evolution algorithm of algorithm for finding Hopf bifurcation point.

19



3.2 Mitogen-Activated Protein Kinase Cascade

Mitogen Activated Protein Kinase cascade is a biochemical network involved in direct-

ing cellular responses to a wide range of biochemical and physiological stimuli. It seems

to be universally present in all eukaryotic cells and plays an important role in cell cycle

regulation, regulation of gene expression, apoptosis and many others. Its dynamics has

been extensively studied mainly theoretically [19–21].

Table 1: Model reactions of MAPK cascade. Abbreviations are used as follows. A -
MAPK kinase kinase, A* - activated MAPK kinase kinase, B - MAPK kinase, B1 -
phosphorylated MAPK kinase, B2 - double phosphorylated MAPK kinase, C - MAPK,
C1 - phosphorylated MAPK, C2 - doubly phosphorylated MAPK, E1 and E2 are
enzymes activatgin and deactivating MAPK kinase kinase respectively, E3 - MAPK
kinase phosphorylase, E4 - MAPK phosphorylase. Complex of any of the enzymes E
with any of the substrates S is denoted simply ES.

1 A + E1 → E1A 11 A*B1 → B1 + A* 21 B2C → C1 + B2
2 E1A → A + E1 12 A*B1 → B2 + A* 22 C1 + B2 → B2C1
3 E1A → A* + E1 13 B2 + E3 → E3B2 23 B2C1 → C1 + B2
4 A* + E2 → E2A* 14 E3B2 → B2 + E3 24 B2C1 → C2 + B2
5 E2A* → A* + E2 15 E3B2 → B1 + E3 25 C2 + E4 → E4C2
6 E2A* → A + E2 16 B1 + E3 → E3B1 26 E4C2 → C2 + E4
7 B + A* → A*B 17 E3B1 → B1 + E3 27 E4C2 → C1 + E4
8 A*B → B + A* 18 E3B1 → B + E3 28 C1 + E4 → E4C1
9 A*B → A* + B1 19 C + B2 → B2C 29 E4C1 → C1 + E4
10 B1 + A* → A*B1 20 B2C → C + B2 30 E4C1 → C + E4

The first mechanism was proposed by Huang and Ferrell [22]. 10 biochemical

transformations (Table 3.5) can be described using 30 elementary reactions. In the

following text, abbreviated names for metabolites and enzymes are used. They are

described in caption of Table 3.5. The reactions occur in cellular compartments which

can be approximated by well mixed batch reactors. Therefore, no pseudoreactions were

added and all metabolites were used in balancing.

The system can be decomposed into 15 extremal pathways. They can be clasified as

of 2 types (see Figure 3.2). First, there are 10 reversible reactions in the system (type

1). Second, the cascade can be divided into 5 cycles (type 2). This is more obvious

from original biochemical diagram which can be found for example in ref. [20]. In

each such cycle (extremal pathway of type 2, Figure 3.2), protein is phosphorylated (or

activated in case of MAPKKK) in a reaction catalyzed by one enzyme and then turned

back by an another enzyme. Stability analysis showed all the 15 extremal pathways to

be stable.

20



Figure 7: Current diagram of MAPK system. The cascade comprises 3 subnetworks
being connected always through 1 metabolite, which plays role of an enzyme in the
second subnetwork.

E3

A

E1

B2

A*B1

B1

E2

B

C

C1

A*

C2
E2A*

A*B

E3B2E3B1

E4

B2C

E1A

E4C2

E4C1

B2C1

Figure 8: Two types of extremal pathways. There are 10 extremal pathaways of type
1 (red) and 5 extremal pathways of type 2 (green).

E3

B2

A*B1

B1B

A*

A*B

E3B2E3B1

Size of the system allowed rapid stability analysis of all pairs of extremal pathways.

Of all such combinations, 2 were found to be unstable, each having 2 different sources

of instability, i.e. 2 different sets of determinant-indicated metabolites. None of these

4 subsystems possesses a critical or strong cycle, therefore no category of potential

oscillators (section 2.3) suits to the systems.

Possibility of ocillations was examined employing the genetic algorithm described

in section 3.1.5. Concentration vector satisfying conditions for supercritical Hopf

bifurcation was find for one of the subsystems (determinant-indicated species C1 and

C2). Considering symmetry of the system, generalization of this result to the other

pairs of extremal pathways is justifiable. Conclusion can be made that the network

21



Figure 9: Unstable combination of 2 extremal pathways. Determinant indicated species
are in black frames.

C2

E4

B2C

E4C2

B2

C

C1

B2C1

E4C1

B2

C

B2C

E4C2B2C1

C1

E4C1

E4

C2

Figure 10: Unstable combination of 2 extremal pathways. Determinant indicated
species are in black frames.

E3

B2

A*B1

B1B

A*

A*B

E3B2E3B1

E3

B2

A*B1

B1B

A*

A*B

E3B2E3B1

can oscillate for some combinations of rate constants. However, it is important to note

thaty concentration of one of the determinant-indicated species (B) in the best fitting

concentration vector was equal to concentration of one of unindicated species (C). Shift

of a property by repeated mutations out of the preset desired region is improbable.

22



3.3 Continuous Flow System of H2O2 - S2O32- - SO32-

Reaction of hydrogen peroxide and tiosulphate exhibits oscillatory behavior [23] in

continuous flow system (CSTR). Since that time, it has been vigorously studied theo-

retically [24] and experimentally [25]. In this reaction, key role of pH for oscillations

was the first time observed. Here we studied an extended system involving also the

effect of carbonates.

Pseudoreactions were used to model continuous flow. The sole products of reaction

(SO2−
4 and S3O

2−
6 ) were not balanced, since their concentration has no effect on dynam-

ics of the system. Water was not balanced, since its concentration in aqueous solutions

can be considered the same. The final system comprises 15 species taking part in 30

reactions and 15 outflow and 3 inflow pseudoreactions.

Table 2: Model reactions of HPTS system.

R1 S2O32- + H2O2 → HOS2O3- + OH- R25 H+ + CO32- → HCO3-
R2 H2O2 + HOS2O3- → S2O52- + H+ R26 HCO3- → H+ + CO32-
R3 S2O32- + HOS2O3- → OH- + S4O62- R27 H+ + HCO3- → H2CO3
R4 H2O2 + S2O52- → H+ + HSO3- R28 H2CO3 → H+ + HCO3-
R5 H2O2 + HSO3- → H+ R29 H2CO3 → CO2
R6 → OH- + H+ R30 CO2 → H2CO3
R7 OH- + H+ → R31 S2O32- →
R8 HSO3- → H+ + SO32- R32 H2O2 →
R9 H+ + SO32- → HSO3- R33 HOS2O3- →
R10 H2O2 → H+ + HO2- R34 OH- →
R11 H+ + HO2- → H2O2 R35 S2O52- →
R12 H2O2 + SO32- → R36 H+ →
R13 S2O52- → 2 HSO3- R37 CO2 →
R14 HOS2O3- + HO2- → S2O52- R38 S4O62- →
R15 S4O62- + HO2- → S2O32- + S2O52- + H+ R39 HSO3- →
R16 S4O62- + SO32- → S2O32- R40 SO32- →
R17 HOS2O3- + S2O52- → HSO3- R41 HO2- →
R18 HOS2O3- + HSO3- → R42 S2O3 →
R19 HOS2O3- + SO32- → OH- R43 CO32- →
R20 HOS2O3- + H+ → S2O3 R44 HCO3- →
R21 S2O3 → HOS2O3- + H+ R45 H2CO3 →
R22 S2O32- + S2O3 → S4O62- R46 → HCO3-
R23 H2O2 + S2O3 → S2O52- + 2 H+ R47 → S2O32-
R24 HSO3- + S2O3 → H+ R48 → H2O2

23



Figure 11: Network diagram of HPTS system. Pseudoreactions R31-R48 and reaction
R18 are hidden for the sake of clarity. Color of curve in diagram correspond to type
of the reaction. Green curves represent acidobasic reactions, blue curves reactions
in which sulphur is oxidized, red are disproportionations and magenta is used for
synproportionation reaction. Grey curves represent acidobasic reactions of carbon
dioxide.

The system can be decomposed into 1177 extremal pathways. Out of them, 468

were shown to be unstable when simple kinetic matrix was used and 388 were shown to

be unstable using kinetic matrix assuming acid catalysis of reaction R3. Since most of

the extremal pathways had more source of instabilities (deteminant-indicated species),

the final numbed of classified extremal pathways with instability sources was 1346.

24



Figure 12: Unstable extremal pathway in HPTS system classified as 1B. Species of type
X are framed in rectangles, species of type Y in the oval. Sulphite plays role of species
Z.

22

Far most (1239) of these instabilities did not contain any critical cycle with suitable

exit reaction or strong cycle and therefore were not classified. The system has no

extremal pathways exhibiting instabilities of type 2. In 13 extremal pathways, potential

oscillator of type 1B was identified. All these extremal pathways possessed the same

unstable cycle. A representant of this group is shown in Figure 3.3. The rest 94 unstable

extremal pathways were divided into 8 groups according to species of type X, i.e. their

constituents of unstable cycles. One of the groups possessed cycles comprising only H+

and S2O3. On Figure 3.3, a member of this group of elementary pathways is presented.

H+ and S2O3 occur in unstable cycles of extremal pathways belonging to another 6

groups.

25



Figure 13: Unstable extremal pathway in HPTS system classified as 1C. Species of type
X are framed in rectangles, species of type Y in the circle.

3.4 Oscillations of Hydrogen Peroxide in the Atmosphere

The model proposed by Stewart[26] seems to be in good agreement with observed

annual cycle of hydrogen peroxide in the Earth’s atmosphere described by Kleinman

[27]. Unstable species are created in photochemical reactions where stable species are

activated by photons. We assume that these reactions have zeroth order with respect

to light, so that the absorption of light by atmosphere is not primarily via the studied

reactions. The reactions can be considered to occur in batch mode. Inflow of carbon

source had to be added in two pseudoreactions (R66 and R67). The carbon is in the

model oxidized to CO2, which is a stable terminal product of the system and therefore

is not balanced in our equations. Oxygen and water vapor were not balanced since their

concentration in atmosphere are much higher than concentrations of balanced species

and are not influenced by the reaction system.

This large system served as a stress test for the metodology. Calculation of extreme

pathways took about 2:34 hours on 1 core of AMD Phenom 2. The following stability

calculation and classification took 33 minutes. Network diagram of the system is not

shown here because of its size.

The system was decopmposed into 1463 extremal pathways. Out of these, 211 were

found to be stable. 2165 combinations of extremal pathways with sets of deteminant-

indicated sets of metabolites were analyzed. 1878 of them were not assigned any

category. Out of the rest 287 extreme pathways, far most (280) were clasified as of

1C. Three were classified as of category 1B, three as of 2B and just one as of 2C.

26



Table 3: Model reactions of HPTS system [26]. Abbreviations are used as follows. F -
formaldehyde, MP - CH3O2, EP - C2H5O2, PAN - peroxyacetyl nitrate. Metabolites
present in considerable excess and final products are not shown.

R1 O3 → 2 OH R35 NO3 + NO → 2 NO2
R2 NO2 → NO + O3 R36 2 NO3 → 2 NO2
R3 H2O2 → OH + OH R37 OH + NO3 → HO2 + NO2
R4 HNO3 → OH + NO2 R38 HO2 + NO3 → HNO3
R5 PAN → CH3CO3 + NO2 R39 HO2 + NO3 → OH + NO2
R6 OH + HO2 → R40 NO3 + F → HNO3 + HO2 + CO
R7 H2O2 + OH → HO2 R41 N2O5 → HNO3 + HNO3
R8 OH + O3 → HO2 R42 NO3 + NO2 + M → N2O5 + M
R9 HO2 + O3 → OH R43 N2O5 → NO3 + NO2
R10 NO + HO2 → OH + NO2 R44 HNO2 → OH + NO
R11 NO + O3 → NO2 R45 HNO4 → HO2 + NO2
R12 CO + OH → HO2 R46 NO2 + HO2 + M → HNO4 + M
R13 2 OH + M → H2O2 + M R47 OH + NO + M → HNO2 + M
R14 OH + NO2 + M → HNO3 + M R48 HNO4 → HO2 + NO2
R15 2 HO2 + M → H2O2 + M R49 C2H4 + OH + M → C2H4OHO2
R16 F → 2 HO2 + CO R50 C2H4OHO2 + NO → C2H4OOH + NO2
R17 F → CO R51 C2H4OOH + M → 2 F + HO2
R18 CH3OOH → MP + OH R52 C2H4 + O3 → F + CH2O2
R19 CH4 + OH → MP R53 C2H4 + O3 → F + HO2 + OH
R20 MP + HO2 → CH3OOH R54 CH2O2 + HO2 → F + OH
R21 CH3OOH + OH → MP R55 C2H6 + OH → EP
R22 CH3OOH + OH → CH2OOH R56 EP + NO → NO2 + HO2 + CH3CHO
R23 CH2OOH + M → F + OH R57 CH3CHO → MP + HO2 + CO
R24 2 MP → 2 F + 2 HO2 R58 CH3CHO → CH3CO3 + HO2
R25 2 MP → F + CH3OH R59 CH3CHO + OH → CH3CO3
R26 CH3OH + OH → MP R60 CH3CHO + NO3 → CH3CO3 + HNO3
R27 NO + MP → NO2 + F + HO2 R61 CH3CO3 + NO2 → PAN
R28 F + OH → CO + HO2 R62 PAN → CH3CO3 + NO2
R29 NO3 → NO2 + O3 R63 CH3CO3 + HO2 → M
R30 NO3 → NO R64 2 CH3CO3 → 2 MP
R31 N2O5 → NO2 + NO3 R65 CH3CO3 + NO → NO2 + MP
R32 HNO3 + OH → NO3 R66 → CH4
R33 NO2 + O3 → NO3 R67 → C2H4
R34 NO3 + NO2 → NO + NO2

27



3.5 Modified Belousov-Zhabotinsky System

Belosov-Zhabotinsky (BZ) system was modified [28], so that cyclohexadione was used

instead of malonic acid. Advantage over classical BZ reaction is that no bubbles are

formed during reaction, which is highly suitable for experimental studies. The system

was thoroughly studied by Szalai et al. [29]. This paper was source of the model

equations.

The model was complemented by an outflow of the final product (HOBr). Without

this output reaction, only reversible reactions were identified as extremal pathways.

Benzoquinone was not balanced since it is solely product of the reaction. Bromate

ion, H+ and cyclohexadione were not balanced since their concentration is much higher

than the concentrations of other involved species.

HBrO2

Br2

Br(-)

CHDE

BrO2.

H2Q

HOBr

R Ox

CHED

BrCHD

Br2O4

H2BrO2(+)

28



Table 4: Model reactions of modified Belousov-Zhabotinsky system [29].
Abbreviations are used as follows. CHED - cyclohex-2-en-1,4-dione, BrCHD
- 2-bromocyclohexane-1,4-dione, CHDE - enol form of cyclohexa-1,4-dione
(4-hydroxycyclohex-3-enone), H2Q - 1,4-hydroquinone, Ox - oxidized form of
metal catalyst, R - reduced form of metal catalyst. Only balanced species are shown.

R1 Br- + HOBr → Br2 R17 H2Q + HOBr → Br-
R2 Br2 → Br- + HOBr R18 H2Q + Br2 → 2 Br-
R3 Br- + HBrO2 → 2 HOBr R19 Ox + HBrO2 → R + BrO2.
R4 2 HOBr → Br- + HBrO2 R20 R + BrO2. → Ox + HBrO2
R5 Br- → HOBr + HBrO2 R21 2 R → 2 Ox + HBrO2
R6 HOBr + HBrO2 → Br- R22 2 Ox → 2 R + H2Q
R7 HBrO2 → H2BrO2+ R23 2 Ox + H2Q → 2 R
R8 H2BrO2+ → HBrO2 R24 CHED → H2Q
R9 HBrO2 + H2BrO2+ → HOBr R25 BrCHD → CHED + Br-
R10 HBrO2 → Br2O4 R26 2 Ox + BrCHD → Br- + 2 R
R11 Br2O4 → HBrO2 R27 CHDE + Br2 → BrCHD + Br-
R12 Br2O4 → 2 BrO2. R28 → CHDE
R13 2 BrO2. → Br2O4 R29 CHDE →
R14 H2Q + 2 BrO2. → 2 HBrO2 R30 → H2Q + HBrO2
R15 HBrO2 → H2Q + HOBr R31 HOBr →
R16 H2Q → HBrO2

The system can be decomposed into 71 extreme pathways. Out of these, 28 were

found to be unstable. Many edges had more than one source of instability, therefore 46

edges with their instability sources were examined. There were 5 unclassified extreme

pathways, category 1C in 4 of those and of category 1B in 12 of those. Category 2 was

also observed 2B 13 times and 2C 12 times.

Species in unstable cycles were used for systematization of the unstable edges such

that edges in 1 group have the same unstable cycle. The species mostly differ in

reactions in which determinant-indicated species do not take part. The edges identified

as of category 1B were clustered into 3 groups, 1C into 1 group, 2B into 2 and 2C

into 3 groups. Representative extremal pathway similar to that found in the original

Belousov-Zhabotinsky equation is shown in Figure 14. A representant of another group

classified as of 1B category is shown in Figure 15. An interesting phenomenon can

be found in Figure 16. Single extremal pathway has 2 different sets of metabolites

indicated by determinant, whose cycles were classified as of different classes (1B and

2B). Representant of the other group classified as of category 2B is not shown here.

Unstable cycles of extremal pathways classified as of category 2B include terminal

product of the reaction (HOBr) whose concentration increases with time. Therefore,

29



Figure 14: Unstable extremal pathway in modified Belousov-Zhabotinsky system
similar to one present in original Belousov-Zhabotinsky reaction. Category 1B. Species
of type X are framed in rectangles, species of type Y in the circle. HOBr plays role
of species Z. In an another extremal pathway in this group, type Z species is oxidized
form of the catalyst.

Br(-) H2Q

HOBr

R Ox

Br2O4

BrO2.

HBrO2

its effect should be observed only in the initial stage of experiments. Its unstable cycle

involves all the species involved in the one depicted in Figure 16 right, i.e. bromine,

bromide anion, hypobromic acid and 2-bromo-1,4-cyclohexadione, and HBrO2.

30



Figure 15: Unstable extremal pathway in modified Belousov-Zhabotinsky system not
found in original Belousov-Zhabotinsky reaction. Category 1B. Species of type X are
framed in rectangles, species of type Y in the circle. HOBr and Br2 serve as type Z
species.

Br2

Br(-)

CHDE

H2Q

HOBr

Ox

CHED

BrCHD

HBrO2

BrO2.

R

31



Figure 16: Unstable extremal pathways in modified Belousov-Zhabotinsky system.
Species of type X are framed in rectangles, species of type Y in the circle. LEFT:
Representant of one of three groups of extremal pathways classified as 1B. Here oxidized
form of metal catalyst serves as type Z species. RIGHT: Representant of one of two
groups of extremal pathways classified as of 2B.

HBrO2

CHDE

R Ox

Br(-)

HOBrBr2

BrCHD

HBrO2

CHDE

R Ox

Br(-)

HOBrBr2

BrCHD

32



3.6 Chemical Reactors with Mass Transfer

System of well-mixed identical batch reactors with mass transfer was studied. In each

reactor, two species react in a reaction system known as Brusselator. Mass transfer (or

diffusion) is modeled by pseudoreactions. In this model, diffusion-induced instability

can be intuitively imagined as instability of extreme currents including

Figure 17: System of well-mixed reactors with mass transfer. Species X in ith reactor
is represented by species Xi. Addition of a new reactor increases the system by 2 new
species and 6 new reactions.

n

X

Y

1

1

X

Y

X

Y

2

2

n

Number of extreme pathways grows fast with the system size. Simple Brusselator

system has 2 extreme pathways. Brusselators in two coupled reactors were decomposed

into 12 extreme pathways, in three reactors into 36 pathways, in 4 reactors into 92

pathways and in 5 reactors into 216 pathways. Most of the unstable pathways have

autocatalytic reaction in one reactor and negative feedback reaction in an another one.

33



4 DISCUSSION AND CONCLUSIONS

Automatic classification of potential oscillators proposed and implemented in this work

enables managing the output of stoichiometric network analysis. Classified unstable

extreme pathways can be grouped according to their categories. Then, all extreme

pathways of one category can be grouped based on set of their X species. In all

the models analyzed in this work, such grouping significantly decreased the number

Analogically, extreme pathways can be grouped according to their Y or Z species. We

can continue to simplify the results by searching only for the most elementary unstable

features. For example, if there is an extreme pathway whose set of X species is a subset

of X species of an another extreme pathway, we can omit the latter.

Outcomes of this work enable comfortable qualitative analyses of large oscillators.

However, their size is limited by computational complexity of stoichiometric network

analysis. Unlike number of interesting features in network might increase linearly with

size of the system, number of extreme pathways increases exponentially with system size

[30]. Figure 4 illustrates this problem. Second, even if a single steady state subnetwork

is selected, the number of principal subdeterminants to be evaluated exponentially

increases with the system. The latter problem can be solved by massive paralelization,

sicne calculation of all subdeterminants can be easily alloted. However, undesirable

scaling sets limits for the methodology.

Figure 18: Illustration of combinatorial complexity of network decomposition problem.
The number of extremal pathways increases exponentially with number of Bi’s or
Ci’s because all pathways have to be included in basis. However, the interesting
autocatalytic feature remains the same.

A B

B1

B2

B4

B3

B5
C

C1

C2

C4

C3

C5

An another open problem is the need for combinations of extreme pathways, i.e.

two- and higher-dimensional faces of current cone. The case of MAPK model illustrates

that sometimes sources of instability can be suppressed in single extreme pathways and

be expressed only when combined with other pathways. To our knowledge, there is no

theory stating that a finite dimensionality of current cone is sufficient for identification

of all instability sources.

The problem of instability sources is closely related to the question of number

of potential oscillator categories. Only a marginal fraction of all unstable edges was

34



classified in the hereby analyzed models. It would be perhaps interesting to classify the

yet unclassified unstable pathways. The categorization is based on observations and

various dynamics / experimental / theoretical studies. The ”others” category remains.

There is a natural question, whether oscillators can be classified into a finite number

of categories defined by network topology. If not, can the categories be systematically

described? If yes, is there a sufficient number of extreme pathways which in combination

ensure identification of such feature? And how many of network topology derived

categories are relevant for dynamics?

Throughout the thesis, there is a strict distinction between oscillators, potential

oscillators and unstable pathways. Not all unstable pathways satisfy conditions for

oscillations. We do not know about any method of determining whether an unstable

network can exhibit oscillations provided suitable reaction rate vector. By hereby pro-

posed genetic algorithm, we can only decide whether there is a possibility of oscillation

by finding a concentration vector fulfiling the conditions. Failure to converge, even in

5000 generations set by default does not ensure lack of this feature.

The case of modified BZ reaction well illustrates the fact that one system can involve

more unstable networks classified as potential oscillators. Moreover, these potential

oscillators may be of different categories. For example, we have identified a 2B potential

oscillator in modified BZ reaction. In this potential oscillator network, HOBr plays role

of X species. The oscillator might be exhibited in the system under some conditions

but as the reaction proceeds and the terminal product HOBr accumulates it vanishes.

Relevance of each subnetwork is given by its actual flow or by its interaction with the

other networks. As mentioned in chapter 2.1, all reactions are in principle possible and

determining, which reactions are present is based on their rate. Similarly, presence of a

potential oscillator is not a discrete phenomenon but rather a present feature sometimes

with negligible amplitude and sometimes with amplitude sufficient to dominate the

dynamics.

35



References

[1] Field, R. J.; Koros, E.; Noyes, R. M. Journal of the American Chemical Society

1972, 94, 8649–8664.

[2] Gillespie, D. The Journal of Physical Chemistry 1977, 81, 2340–2361.

[3] Domijan, M.; Kirkilionis, M. Journal of Mathematical Biology 2009, 59, 467–501.

[4] Papin, J. A.; Stelling, J.; Price, N. D.; Klamt, S.; Schuster, S.; Palsson, B. O.

Trends in Biotechnology 2004, 22, 400 – 405.

[5] Papin, J. A.; Price, N. D.; Wiback, S. J.; Fell, D. A.; Palsson, B. O. Trends in

Biochemical Sciences 2003, 28, 250–258.

[6] Xi, Y.; Chen, Y.-P. P.; Cao, M.; Wang, W.; Wang, F. BMC Bioinformatics 2009,

10, year.

[7] Clarke, B. L. Advances in Chemical Physics 1980, 43, 1–215.

[8] Hadač, O.; Schreiber, I. Physical Chemistry Chemical Physics 2011, 13, 1314–

1322.

[9] Klamt, S.; Stelling, J. Trends in Biotechnology 2003, 21, 64 – 69.

[10] Eiswirth, M.; Freund, A.; Ross, J. In Mechanistic Classification of Chemical

Oscillators and the Role of Species ; John Wiley and Sons, Inc., 1991; pp 127–199.

[11] Chevalier, T.; Schreiber, I.; Ross, J. The Journal of Physical Chemistry 1993, 97,

6776–6787.

[12] Schreiber, I.; Hung, Y.-F.; Ross, J. The Journal of Physical Chemistry 1996, 100,

8556–8566.

[13] Eiswirth, M.; Bürger, J.; Strasser, P.; Ertl, G. The Journal of Physical Chemistry

1996, 100, 19118–19123.

[14] Ross, J.; Schreiber, I.; MO, V. In Oscillatory reactions ; Oxford University Press,

2005; pp 125–169.

[15] Schreiber, I.; Ross, J. The Journal of Physical Chemistry A 2003, 107, 9846–9859.

[16] Schilling, C.; Letscher, D.; Palsson, B. Journal of Theoretical Biology 2000, 203,

229 – 248.

[17] Novak, B.; Tyson, J. J. Nature Reviews Molecular Cell Biology 2008, 9, 981–991.

36



[18] Holodniok, M.; Kĺıč, A.; Kub́ıček, M.; Marek, M. In Metody analýzy nelineárńıch

dynamických modelu̇; ACADEMIA, 2005.

[19] Hornberg, J.; Binder, B.; Bruggeman, F.; Schoeberl, B.; Heinrich, R.; Wester-

hoff, H. Oncogene 2005, 24, 5533–5542.

[20] Qiao, L.; Nachbar, R. B.; Kevrekidis, I. G.; Shvartsman, S. Y. PLoS Comput Biol

2007, 3, e184.

[21] Takahashi, K.; Tanase-Nicola, S.; ten Wolde, P. R. Proceedings of the National

Academy of Sciences of USA 2010, 107, 2473–2478.

[22] Huang, C.; Ferrell, J. Proceedings of the National Academy of Sciences of USA

1996, 93, 10078–10083.

[23] Orban, M.; Epstein, I. R. Journal of the American Chemical Society 1987, 109,

101–106.

[24] Rábai, G. a. The Journal of Physical Chemistry A 1999, 103, 7268–7273.

[25] Yuan, L.; Gao, Q.; Zhao, Y.; Tang, X.; Epstein, I. The Journal of Physical

Chemistry A 2010, 114, 7014–7020, PMID: 20536217.

[26] Frey, M. M.; Stewart, R. W.; McConnell, J. R.; Bales, R. C. Journal of Geophysical

Research (Atmospheres) 2005, 110, 23301.

[27] Kleinman, L. Journal of Geophysical Research (Atmospheres) 1991, 96, 20721–

20733.

[28] Kurin-Csörgei, K.; Zhabotinsky, A. M.; Orbán, M.; Epstein, I. R. The Journal of

Physical Chemistry 1996, 100, 5393–5397.

[29] Szalai, I.; Kurin-Csorgei, K.; Epstein, I.; Orban, M. The Journal of Physical

Chemistry A 2003, 107, 10074–10081.

[30] Klamt, S.; Stelling, J. Molecular Biology Reports 2002, 29, 233–236.

37



LIST OF ABBREVIATIONS AND SYMBOLS

Abbreviations

BZ - Belousov-Zhabotinsky

CRN - chemical reaction network

CSTR - continuous-flow stirred tank reactor

HPTS - hydrogen peroxide - tiosulphate system

MAPK - mitogen-activated protein kinase

PES - potential energy surface

SNA - stoichiometric network analysis

SODE - system of ordinary differential equtions

Symbols

κ - kinetic matrix

ν - stoichiometric matrix

ν
L - left stoichiometric matrix

ν
R - right stoichiometric matrix

B - matrix defined in Equation ??B), important for stability analysis

e - extreme pathway; vector in reaciton rate space

f - functions on right side of SODE

J - Jacobian matrix

m - number of species in the system

r - number of reactions in the system

v - reavtion rate vector

x - concentration vector of species

x0 - concentration vector of species in a steady state

Note: Symbols for species used specifically in only one model are not listed here.

See table of reactions at the beginning of each model section in theoretical part.

38



APPENDICES

I tried to maintain some standards to make the code easy to read. Identifiers of matrices

always start with a capital letter, identifiers of vectors start with lower case v and

scalars with other lower case letter. Functions (exept for the main functions) start

with f .

In the hereby presented documentation, some additional rules can be noticed. First,

all MATLAB/Octave keywords are highlighted blue and Octave/MATLAB built-in

functions brown, all the identifiers (functions and variables) magenta, strings are green

and comments (if any) are red. A dependency diagram is shown in the beginning of

each documentation. All the variables are briefly explained with some comments of

their type or unusual properties and all the used built-in Octave/MATLAB functions

listed in order to help the user / developer cope with other (earlier) versions of Octave

/ MATLAB. Just to remember, all the presented functions were tested for Octave

3.2.4 . MATLAB-compatible (tested on version R2010) source codes can be found in

the enclosed CD.

A Documentation for the function edgeSearch

A.1 Dependency diagram

For brief explanation of algorithm see chapter 3.1.2. It is worth to note that the

number of edges can be very high; it can grow exponentially with number of reactions.

Therefore, the limiting step is in the function fcheck. Setting relative change of

temporary edges in an iteration as the control parameter can be introduced by small

changes in the code (line 71).

39



A.2 Main function

Variables

Input variables
S real stoichiometric matrix

each row corresponds to 1 metabolite
binSize integer size of bin in fiterCheck function
maxChange integer control parameter for fiterCheck function

max number of redundant temporary edges

Output variables
E positive real Edges. Each row represents 1 edge.

Local variables
E sparse positive real temporary edges
E1 sparse positive real temporary edges
E2 sparse positive real temporary edges
Ebool sparse boolean indication of involved reactions
vindE1 positive integers indices of temporary edges

necessary for random rearrangement
vnosreact positive integers numbers of reactions involved in each edge
change positive integer number of redundant edges in one iteration
i positive integer index
j positive integer index
l integer number of reactions
m integer number of metabolites
numberEdges positive integer number of temporary edges in E
numberEdges1 positive integer number of temporary edges in E1

The only necessary input is stoichiometric matrix S. Time spent on 1 iteration of

iterCheck is proportional approximately to square of binSize, but number of iterations

necessary increases with decreasing binSize. For usual applications, its most efficient

value was found to be around 1000.

Code description

Setting default values if no binSize and/or maxChange is specified on input. Default

values for control of fiterCheck seem to perform well. Then, extended matrix of edges

E is initialized.

1 function E = edgeSearch(S,binSize ,maxChange)

2 if nargin == 2

3 maxChange = 10;

4 elseif nargin == 1

5 binSize = 1000;

40



6 maxChange = 10;

7 endif

8 [m,l] = size(S);

9 E = sparse([eye(l) S’]);

The main cycle of algorithm - for each metabolite, temporary edges are first com-

bined using function produceZeros. E1 is sparse yet very big matrix. After the

combination, redundant temporary edges are eliminated. Since most of vectors pro-

duced in produceZeros are redundant, iterative (while loop, lines 13-19) approach

using function iterCheck is employed. Temporary edges are randomly divided into

bins of temporary edges of size binSize. Edges are scaled to remain at the same

order of magnitude (lines 20-23). This procedure is a way how to cope with errors

in floating point equality tests. An another way is introduction of some arbitrary

tolerance. However, this approach increases final number of extreme pathways since

unique function does not use it.

10 for i=1:m

11 E1 = fproduceZeros(E,i-1);

12 change = 2* maxChange;

13 while change > maxChange

14 numberEdges1 = size(E1 ,1);

15 vindE1 = randperm (numberEdges1);

16 E2 = E1(vindE1 ,:);

17 [E,change] = fiterCheck(E2, binSize);

18 E1 = E;

19 endwhile

20 numberEdges = size(E,1);

21 for j=1: numberEdges

22 E(j,:) = E(j,:) / max(abs(E(j,:)));

23 endfor

24 endfor

The final set of edges is non-iteratively checked for redundancies and the final set

of edges is scaled. This part of program is responsible fo the formal time scaling of

algorithm O(N2), where N is the final number of edges.

25 E=fcheck(E);

26 numberEdges = size(E,1);

27 for j=1: numberEdges

28 E(j,:) = E(j,:) / max(abs(E(j,:)));

29 endfor

Matrix of edges is extracted from the extended matrix of edges and the edges are

sorted according to the number of reactions involved. In the end, final edge matrix

must be converted from sparse to full matrix in order to be sorted; sortrows operates

only on full matrices.

41



30 E(:,l+1:l+m)=[];

31 Ebool = full(E) >0;

32 vnosreact = Ebool*ones(l,1);

33 E = sortrows (full([ vnosreact E]))(:,2:(l+1))

34 endfunction

A.3 Local function fproduceZeros

This function classifies the temporary edges as those having zero, positive or negative

numbers in column corresponding to the principal metabolite. Then it calls the function

combine to combine edges with negative values with those with positive values. All the

output temporary edges have zeros in column corresponding to the principal metabolite.

Variables

Input variables
E sparse real temporary edges
n positive integer index of principal metabolite

Output variables
Enew sparse real without redundant temporary edges

Other variables
K sparse real temporary edges with positive value of principal metabolite
Z sparse real temporary edges with negative value of principal metabolite
N sparse real temporary edges with zerovalue of principal metabolite
mi positive integer index of principal metabolite

Code description

This function only classifies temporary edges into those having negative and positive

values in the field corresponding to principal metabolite. From these temporary edges,

new matrix of temporary edges is produced using fcombine function.

35 function Enew = fproduceZeros(E,n)

36 mi = size(E,2)-n;

37 K = E(find(E(:,mi) >0) ,:);

38 Z = E(find(E(:,mi) <0) ,:);

39 N = E(find(E(:,mi)==0) ,:);

40 Enew = sparse([N ; fcombine (K,Z,mi)]);

41 endfunction

42



A.4 Local function fcombine

Combines all the temporary edges with negative value Double cycle is necessary. The

number of lines of NN equals to number of lines of Z multiplied by number of lines of

K .

Variables

Input variables
K sparse real temporary edges with positive value of principal metabolite
Z sparse real temporary edges with negative value of principal metabolite
mi positive integer index of principal metabolite

Output variables
NN sparse real large matrix of temporary edges including redundant

Other variables
i positive integer index (of temporary edges with positive value)
j positive integer index (of temporary edges with negative value)
k positive integer number of temporary edges in K

s positive integer number of columnes in matrices K, Z, NN

z positive integer number of temporary edges in Z

Code description

Initialization of output matrix.

42 function NN = fcombine (K,Z,mi)

43 [k,s] = size(K);

44 z = size(Z,1);

45 NN = zeros(k*z,s);

The double cycle combines each positive value with each negative value.

46 for i=1:k

47 for j=1:z

48 NN((i-1)*z+j,:) = sparse(K(i,:)/K(i,mi) - Z(j,:)/Z(j,mi)

);

49 endfor

50 endfor

51 endfunction

43



Input variables
E sparse real matrix of temporary edges with redundancies
binSize positive itneger size of bin for pairwise redundancy check

Output variables
Enew sparse real matrix of temporary edges

without redundancies in bins
change positive integer number of found redundant temporary edges

Other variables
A sparse real temporary edges from 1 bin with no redundancies
vchange real absolute and relative amount

of all the found redundancies
a positive integer number of input temporary edges
b positive integer size of a temporary edge
memoryCheckPoint positive integer pointer for storage of output in memory
numberBins positive integer number of bins
r positive integer number of temporary edges in a bin

after the check for redundancies

A.5 Local function fiterCheck

Variables

Code description

Calculates the number of bins. If the number of temporary edges in E is lower than

binSize , simple check procedure is executed. Memory necessary for sparse matrix

Enew has upper bound - size of E . The number of bins is rounded down, the remaining

vectors are simply left for the next iteration.

52 function [Enew , change] = fiterCheck(E, binSize)

53 [a, b] = size(E);

54 numberBins = floor(a/binSize);

55 Enew = spalloc(a,b,nnz(E));

56 if numberBins==0

57 Enew = fcheck(E);

58 change = 0;

59 return;

60 endif

Stepwise filling of preallocated memory spares a lot of time, but is little more

complicated.

61 memoryCheckPoint = 0;

62 for i=1: numberBins

63 A = fcheck(E((i-1)*binSize +1:i*binSize ,:));

64 r = size(A,1);

44



65 Enew(memoryCheckPoint+1: memoryCheckPoint+r,:) = A;

66 memoryCheckPoint = memoryCheckPoint+r;

67 endfor

Finally, the remainig temporary edges are appended and the freed memory corre-

sponding to erased temporary edges is deallocated. The relative change vchange(2)

of size of E has only informative value.

68 Enew(( memoryCheckPoint+1):( memoryCheckPoint+a-numberBins*binSize

) ,:) = (E((( numberBins)*binSize +1):a,:));

69 Enew(( memoryCheckPoint+a-numberBins*binSize +1):a,:)=[];

70 change = a-size(Enew ,1);

71 vchange = [change 100.0*(a-size(Enew ,1))/size(E,1)]

72 endfunction

A.6 Local function fcheck

Variables

Input variables
E (sparse) real temporary edges with redundancies

Output variables
Enew sparse real temporary edges with no redundancies

Other variables
M1 bool zero fields in the selected temporary edge
M2 bool zero fields in all the input temporary edges
M2minusM1 integer (1|0| − 1) simply M2 - M1

vdecide bool
vdel bool
veq bool
visSubset bool
i positive integer index of temporary edges
r positive integer number of temporary edges
q positive integer size of a temporary edge

Code description

This function presumes each vector to be non-redundant. E is transformed into full

matrix since the function unique operates only on full matrices.

73 function Enew = fcheck(E)

74 E = unique(full(E), ’rows’);

75 [r,q] = size(E);

76 vdel = zeros(r,1);

45



In each cycle of this main loop fcheck compares a selected vector with all other

vectors. The procedure is formally only single loop because it is vectorized. M1 is

simply repeated vector of the zero fields in the selected vector (temporary edge) and

M2 is simply matrix of the zero fields of all vectors. In line ... boolean matrix (

M2minusM1 > -1 ) is multiplied by unit vector to get the number of zeros and ones in

the vdecide is in line ... used as vector of integers (function sum ).

77 for i=1:r

78 M1 = repmat(E(i,:)==0,r,1);

79 M2 = E==0;

80 M2minusM1 = M2 - M1;

81 veq = (M2minusM1*ones(q,1)) == 0;

82 visSubset = (( M2minusM1 >-1)*ones(q,1))==q;

83 vdecide = (veq == 0) & (visSubset == 1);

84 if sum(vdecide)>0

85 vdel(i)=1;

86 endif

87 endfor

88 Enew = E;

89 Enew(find(vdel) ,:) = [];

90 Enew = sparse(Enew);

91 endfunction

46



B Documentation for the function stability

B.1 Dependency diagram

B.2 Main function

Variables

Input variables
K real kinetic matrix
S real stoichiometric matrix
vs positive real convex combination of edges

Output variables
vmind positive integer indices of metabolites indicated by determinant

can be matrix or scalar
isStable bool 1 if stable, 0 if unstable

Other variables
B square real matrix defined by equation 11
Kombc positive integer each row represents indices of one combination

number of rows can be very high
PrincSub square real selected principal subdeterminant of B
vlines bool non-zero rows and columns of B
vyber positive integer one combination of j indices

one row from Komb

i positive integer index of metabolites (lines of B )
j positive integer index of combinations (lines of Komb )
isLastCycle bool 1 if loop has to end after current cycle
m positive integer number of rows of S
mm positive integer number of non-zero rows of B

Code description

If an unstable subdeterminant comprising j metabolites is found, the cycle is completed

(lines 14-22) by serching for other combinations of j metabolites inducing an unstable

47



subdeterminant of B . Therefore, the function stability returns as vmind all the

minimum index combinations corresponding to unstable subdeterminants (line 19).

1 function [isStable , vmind] = stability(S,vs,K)

2 m = size(S,1);

3 vmind = 0; %! scalar (0) if the edge is stable

4 B = - S * diag(vs) * K’;

5 isStable = 1;

6 vlines = fsaveTime(B);

7 mm = sum(vlines);

8 isLastCycle = 0;

9 for i=1:mm

10 Kombc = nchoosek ((1:m)(find(vlines)),i);

11 for j=1: size(Kombc ,1)

12 vyber = Kombc(j,:);

13 Princsub = B(vyber ,vyber);

14 if det(Princsub )<0

15 isStable =0;

16 if vmind == 0

17 vmind = vyber;

18 else

19 vmind = [vmind ; vyber];

20 endif

21 isLastCycle = 1;

22 endif

23 endfor

24 if isLastCycle == 1

25 return;

26 endif

27 endfor

28 endfunction

B.3 Local function fsafeTime

Variables

Code description

In the beginning, the algorithm presumes all rows / columns to be non-zero. In a loop,

it check whether for an index i both row and column are zero. In that case, that row

(and column) is unnecessary.

29 function vlines = fsaveTime(B)

30 b = size(B,1);

31 vlines = ones(1,b);

48



Input variables
B real square matrix defined in 11

or see line 4 of the main function

Output variables
vlines bool 0 for ith metabolite if

ith line and row in B is zero

Other variables
b positive integer size of matrix B
i positive integer index

32 for i=1:b

33 if ((B(i,:)==zeros(1,b)) && (B(:,i)==zeros(b,1)))

34 vlines(i) = 0;

35 endif

36 endfor

37 endfunction

49



C Documentation for the function oscilClasses

C.1 Dependency diagram

C.2 Main function

The program takes on input left and right stoichiometric matrices, extremal pathway

and set of metabolites indicated by determinant. Emtol is intended to be a very low

number; it is a error tolerance level in floating point equality tests. Types 12, 13, 14,

22 and 23 on output stand for 1B, 1C, unclassified, 2B and 2C respectively.

Variables

Stoichiometric matrix is calculated from left and right stoichiometric matrices. vw is

usually void set.

1 function [typ , vx, vy, vz, vw, noCycl] = oscilClasses(ve, vmold ,

Slbig , Srbig , Kbig , emtol)

2 Sbig = Srbig - Slbig;

3 if nargin == 5

4 emtol = 1e-6;

5 elseif nargin == 4

6 emtol = 1e-6;

7 Kbig = Slbig;

8 endif

9 noCycl = 0;

50



Input variables
Kbig real kinetic matrix of the whole system
Slbig real left stoichipometric matrix of the whole system
Srbig real right stoichipometric matrix of the whole system
vmold positive integer indices of species indicated by determinant
ve positive real extremal pathway - coefficients of reactions
emtol positive real tolerance for floating point equality tests

Output variables
vw positive integer list of indices for species of type W
vx positive integer list of indices for species of type X
vy positive integer list of indices for species of type Y
vz positive integer list of indices for species of type Z
noCycl positive integer number of found cycles
typ (12|13|14|22|23) the determined type of the potential oscillator

Local variables
Cycles positive integer cycles
CycsSizes positive integer cycles with their sizes in first column
K real kinetic matrix of the studied subsystem
S real stoichiometric matrix of the studied subsystem
Sl real left stoichiometric matrix of the studied subsystem
SmallCycles positive integer cycles of determinant-indicated species

indices in the studed subsystem
Sr real right stoichiometric matrix of the studied subsystem
vmind positive integer determinant-indicated species
vmnew2old positive integer vector for transformation of metbaolite indices
vmold2new positive integer vector for transformation of metabolite indices
vrnew2old positive integer indices for transformation of reaction indices
vrold2new positive integer indices for transformation of reaction indices
vs positive real extremal pathway - only nonzero fields
vtypesOfCycles bool 1 if strong, 0 if critical
i positive integer index - cycles
typOfCycle bool 1 if strong, 0 if critical

10 vx = [];

11 vy = [];

12 vz = [];

13 vw = [];

First, the subnetwork is extracted and transformation vectors (new2old / old2new)

are constructed for comfortable transformations.

14 [S, K, Sl, Sr, vmind , vmnew2old , vmold2new , vrnew2old , vrold2new

] = fold2new (ve, vmold , Sbig , Slbig , Srbig , Kbig , emtol);

Then, all cycles of metabolites indicated by determinant are found.

51



15 SmallCycles = fcycFinder(S, Sl, Sr, vmind);

16 if size(SmallCycles ,1) == 0

17 typ = 14;

18 return

19 endif

Each pair of cycle is checked for links. If there are reactions from one cycle to

another and back, then the cycles are merged.

20 vs = ve(find(ve));

21 Cycles = flinkFinder(SmallCycles ,Sl,Sr);

Strength of cycles is tested.

22 [Cycles , vtypesOfCycles] = fcycType (Cycles , vs, S, K, emtol);

23 if size(Cycles ,1) == 0

24 typ = 14;

25 return

26 endif

If there are no strong cycles and at least 2 critical cycles, some of them might be

composed of W species.

27 if (size(Cycles ,1) > 1) && (vtypesOfCycles ’* vtypesOfCycles == 0)

28 Cycles = fexitFinder(Cycles , Sl, vmind);

29 endif

30 noCycl = size(Cycles ,1);

31 if (noCycl > 1)

32 warning ("more than 1 strong cycle or critical cycle with

outflow !");

33 CycsSizes = [ zeros(noCycl ,1) Cycles ];

34 for i=1: noCycl

35 CycsSizes(i,1) = size(find(Cycles(i,:)) ,2);

36 endfor

37 Cycles = sortrows (CycsSizes)(:,2:size(Cycles ,2)+1);

38 vx = Cycles (1,:);

39 typOfCycle = vtypesOfCycles(1);

40 vx = unique(vcycle(find(vcycle)));

41 else

42 vx = Cycles;

43 typOfCycle = vtypesOfCycles;

44 vx = unique(vx(find(vx)));

45 endif

46 if typOfCycle == 0

47 [typ , vy, vz] = fdecide1BC(vx, Sl, Sr, vmind);

48 else

52



49 [typ , vz] = fdecide2BC(vx, Sl, Sr, vmind);

50 endif

51 vx = (vmnew2old(vx))’;

52 vy = vmnew2old(vy);

53 vz = (vmnew2old(vz))’;

54 vw = setdiff(vmold ,union(vx,vy))

55 endfunction

C.3 Local function fold2new

The purpose of this function is to extract the studied subnetwork from the whole system

and to construct transformation vectors of indices.

Variables

In line ... occurence of metabolites in rows of Smedium is calculated by multiplying

boolean matrix by unit vector.

56 function [S, K, Sl, Sr, vmind , vmnew2old , vmold2new , vrnew2old ,

vrold2new] = fold2new (ve, vmold , Sbig , Slbig , Srbig , Kbig ,

emtol)

57 [mbig ,rbig] = size(Sbig);

58 vrnew2old = find(ve);

59 vrold2new = ve;

60 vrold2new(vrnew2old) = (1: size(vrnew2old ,1))’;

61 Smedium = Sbig(:,vrnew2old);

62 Sbool = abs(Smedium) > emtol;

63 vmbool = Sbool * ones(r = size(vrnew2old ,1) ,1);

64 vmnew2old = find(vmbool);

65 vmold2new = zeros(size(vmnew2old));

66 vmold2new(vmnew2old) = (1: size(vmnew2old ,1))’;

67 S = Smedium(vmnew2old ,:);

68 K = Kbig(vmnew2old ,vrnew2old);

69 vmind = vmold2new(vmold);

70 Sl = Slbig(vmnew2old ,vrnew2old);

71 Sr = Srbig(vmnew2old ,vrnew2old);

72 endfunction

C.4 Local function fcycFinder

Variables

Memory cannot be allocated in the beginning, since theoretical maximum number of

paths is mind!. I did not implement pseudodynamic allocation to keep the code as

53



Input variables
Kbig real kinetic matrix of the whole system
Sbig real stoichiometric matrix of the whole system
Slbig real left stoichiometric matrix of the whole system
Srbig real right stoichiometric matrix of the whole system
ve positive real extremal pathway (coefficient of reactions)
vmold positive integer determinant-indicated species

(indices in the whole system)
emtol positive real tolerance threshold for floating point equality tests

Output variables
K real kinetic matrix of the studies subsystem
S real stoichiometric matrix of the studies subsystem
Sl real left stoichiometric matrix of the studies subsystem
Sr real rigth stoichiometric matrix of the studies subsystem
vmind positive integer determinant-indicated species

(indices in the studied subsystem system)
vmnew2old positive integer indices for transformation of metabolite indices

from indices in studied subsystem
to indices in the whole system

vmold2new positive integer indices for transformation of metabolite indices
from indices in the whole system
to indices in studied subsystem

vrnew2old positive integer indices for transformation of reaction indices
from indices in studied subsystem
to indices in the whole system

vrold2new positive integer indices for transformation of reaction indices
from indices in the whole system
to indices in studied subsystem

Local variables
Sbool bool 1 if there is the metabolite is produced

or consumed by the reaction
Smedium real stoichiometric matrix of the studied subsystem

with zero vectors corresponding to species not present
in the studied subsystem of the whole CRN

vmbool positive integer number of reactions in which metabolites participate
mbig positive integer number of metabolites in the whole system
rbig positive integer number of reactions in the whole system

simple as possible. In theory, exploration of all possible paths is the most computa-

tionally demanding procedure in the whole oscilClasses program and allocation of

eventually large matrices in many cycles does not help at all. Perhaps Floyd’s ”tortoise

and the hare” algorithm would satisfy a genuine computer scientist. However, in our

experience this procedure is fast, since most subnetworks are connected by direct paths.

54



Input variables
S real stoichiometric amtrix
Sl real left stoichiometric matrix
Sr real right stoichiometric matrix
vmind positive integer list of determinant-indicated metabolites

i.e. candidates for species of type X
Output variables

Cycles positive integer cycles

Local variables
Extensions positive integer extended paths
TempCycles

TerminatedCycles positive integer terminated paths - the last nonzero number
in vector is identical to the first one

vCycle positive integer found cycle in raw form
vnz set of nonzero terms in vCycle
c positive integer number of found cycles
i positive integer index - size of cycles
j positive integer index - found cycles
lengthOfCycles positive integer equal to number of indicated species + 1
m positive integer number of all metabolites in the system
mind positive integer number of determinant-indicated metabolites
numberOfCycles positive integer number of found cycles (with repetitions)
r positive integer number of reactions in the system
z1 positive integer index - determinant-indicated metabolites

initial nodes of the cycles

The main loop of this function - for each metabolite (z1) extend each of the already

found paths (j). The maximum size of a paths is mind, since there are only mind

determinant-indicated metabolites. Therefore, another index iis necessary

73 function Cycles = fcycFinder(S, Sl, Sr, vmind)

74 [m,r]=size(S);

75 mind = size(vmind ,1);

76 Cycles = [];

77 for z1=vmind ’

78 TempCycles = zeros(1,mind+2);

79 TempCycles(1,1) = z1;

80 for i=2:(mind+2)

81 TempCyclesNew = [];

82 c = size(TempCycles ,1);

83 for j=1:c

84 [Extensions , TerminatedCycles] = fextendCycle(z1,i,

TempCycles(j,:),Sl,Sr,vmind);

85 TempCyclesNew = [TempCyclesNew ; Extensions];

55



86 Cycles = [Cycles ; TerminatedCycles];

87 endfor

88 TempCycles = TempCyclesNew;

89 endfor

90 endfor

The procedure finds each cycle composed of N metabolites N times since it starts

from each of the metabolites. In order delete replicated cycles, they need to be saved

in a consistent way by sorting the composing metabolites in each row.

91 [numberOfCycles , lengthOfCycles] = size(Cycles);

92 for i=1: numberOfCycles

93 vCycle = Cycles(i,:);

94 vnz = unique(vCycle(find(vCycle)));

95 Cycles(i,:) = [ zeros(1,lengthOfCycles -size(vnz ,2)) vnz ];

96 endfor

97 Cycles = unique(Cycles , ’rows’);

98 endfunction

C.5 Local function fextendCycle

This function returns extends a path by checking whether there is a reaction from the

last metabolite of the path to any other metabolited indicatedby determinant.

Variables

For all reactions, which the last metabolite of path vCycle enters, for all products of

this reactions, if the product is indicated by determinant, extend path. If the extending

metabolite is the same as the first metabolite z1, the path is cyclic. Otherwise, add it

to the other extended paths.

99 function [Extensions , TerminatedCycles] = fextendCycle(z1,m,

vCycle ,Sl,Sr,vmind)

100 Extensions = [];

101 TerminatedCycles = [];

102 vtempCycle = vCycle;

103 vreact = fr2v(vCycle(m-1),Sl);

104 for ireact = vreact ’

105 vprod = fv2p(ireact ,Sr);

106 for iprod=vprod ’ % transpose because for indexes only row

vestors

107 vtempCycle(m) = iprod;

108 if iprod==z1

109 TerminatedCycles = [ TerminatedCycles ; vtempCycle

];

56



Input variables
Sl real left stoichiometric matrix (studied subsystem)
Sr real right stoichiometric matrix (studied subsystem)
vCycle positive integer indices of determinant-indicated

metabolites in the path
vmind positive integer all determinant-indicated metabolites
m positive integer number of metabolites in the studied subsystem
z1 positive integer number of reactions in the studied subsystem

Output variables
Extensions positive integer extended paths
TerminatedCycles positive integer newly found cycles

Local variables
vprod positive integer products of selected reaction react

into which metabolite m enters
vreact positive integer reactions which the last metabolite

of the cycle enters as reactant
vtempCycle positive integer cycle being extended in current cycle
iprod positive integer index - products of the reaction

into which metabolite m enters
ireact positive integer reaction which the last metabolite

of the cycle enters as reactant

110 elseif ismember (iprod , vmind)

111 Extensions = [ Extensions ; vtempCycle ];

112 endif

113 endfor

114 endfor

115 endfunction

C.6 Local function flinkFinder

The purpose of this function is to check whether there are links between the found

cycles. If any pair of cycles is link so that there is reaction from one to the other and

back, they are merged into 1 cycle.

Variables

The algorithm iteratively merges all pairs of cycles that are found to be linked, then

updates set of all cycles and proceeds until no link is found (whileloop).

116 function Cycles = flinkFinder(SmallCycles ,Sl,Sr);

117 Cycles = SmallCycles;

118 [numberOfCycles , lengthOfCycles] = size(SmallCycles);

57



Input variables
Sl real left stoichiometric matrix
SmallCycles positive integer cycles, some of whose might have connections

to the others
Sr real rightstoichiometric matrix

Output variables
Cycles positive integer non-connected cycles

Local variables
UnlinkedCycles positive integer cycles for which no connections were found
vCycle1 positive integer cycle 1
vCycle2 positive integer cycle 2
vmergedCycle positive integer merged cycle in form suitable

for being stored in Cycles matrix
vlinked bool if 0, cycle has no connection to any other cycle
vwhichlinked positive integer indices of linked cycles
j positive integer index - cycle 2
i positive integer index - cycle 1
lengthMerged positive integer number of metabolites in merged cycle
lengthOfCycles positive integer number of determinant-indicated

metabolites + 2
numberOfCycles positive integer number of cycles in Cycles

stop bool 1 if there have been no new links found
controls whileloop

119 if numberOfCycles==1

120 return

121 endif

122 stop = 0;

123 while stop==0

124 [numberOfCycles , lengthOfCycles] = size(Cycles);

125 vlinked = zeros(numberOfCycles ,1);

126 stop = 1;

127 SmallCycles = Cycles;

128 Cycles = [];

129 for i=1:(numberOfCycles -1)

130 for j=(i+1):numberOfCycles

131 vCycle1 = SmallCycles(i,:);

132 vCycle2 = SmallCycles(j,:);

133 if fareLinked(vCycle1 ,vCycle2 ,Sl,Sr)

134 vmergedCycle = unique([vCycle1(find(vCycle1))

vCycle2(find(vCycle2))]);

135 lengthMerged = size(vmergedCycle , 2);

58



136 vmergedCycle = [zeros(1,lengthOfCycles -

lengthMerged) vmergedCycle];

137 Cycles = [ Cycles ; vmergedCycle ];

138 vlinked(i) = 1;

139 vlinked(j) = 1;

140 stop = 0;

141 endif

142 endfor

143 endfor

144 vwhichlinked=find(vlinked ==0);

145 UnLinkedCycles = SmallCycles(vwhichlinked ,:);

146 if size(UnLinkedCycles ,1) >1

147 Cycles = [ Cycles; UnLinkedCycles ];

148 endif

149 Cycles = unique(Cycles , ’rows’);

150 if size(Cycles ,1) == 1

151 stop = 1;

152 endif

153 endwhile

154 endfunction

C.7 Local function fareLinked

This function returns 1 if there exists

1. reaction in which any of metabolites of the first cycle enters as reactants and any

of the metabolites of the second cycle is produced.

2. reaction in which any of metabolites of the second cycle enters as reactants and

any of the metabolites of the first cycle is produced.

Variables

The algorithm presumes all cycle pairs to be disconnected. For each metabolite in

cycle 1, for each reaction which the metabolite enters as reactant save products of this

reaction. If any of the sampled products is member of cycle 2, then there is a link from

cycle 1 to cycle 2.

155 function yesORno = fareLinked(vCycle1 ,vCycle2 ,Sl,Sr)

156 vCyc1 = vCycle1(find(vCycle1));

157 vCyc2 = vCycle2(find(vCycle2));

158 j2d = 0;

159 d2j = 0;

160 vlistOfProducts1 = [];

59



Input variables
Sl real left stoichiometric matrix
Sr real right stoichiometric matrix
vCycle1 positive integer cycle 1 (indices)
vCycle2 positive integer cycle 2 (indices)

Output variables
yesORno bool 1 if the cycles 1 and 2 are linked

Local variables
vCyc1 positive integer cycle 1 without complementing zeros
vCyc2 positive integer cycle 1 without complementing zeros
vlistOfProducts1 positive integer products of all reactions originating in cycle 1
vlistOfProducts2 positive integer products of all reactions originating in cycle 2
vprod positive integer metabolite indices
vreact positive integer reaction indices
d2j bool 1 if there is a link from cycle 2 to cycle 1
imetab positive integer index - metabolites
ireact positive integer index - reactions
j2d bool 1 if there is a link from cycle 1 to cycle 2

161 for imetab=vCyc1

162 vreact = fr2v(imetab ,Sl);

163 for ireact=vreact ’

164 vprod = fv2p(ireact ,Sr);

165 vlistOfProducts1 = [ vlistOfProducts1 ; vprod ];

166 endfor

167 endfor

168 if size(intersect(vlistOfProducts1 , vCyc2) ,2)>0

169 j2d = 1;

170 endif

Analogically, test for reactions from cycle 2 to cycle 1.

171 vlistOfProducts2 = [];

172 for imetab=vCyc2

173 vreact = fr2v(imetab ,Sl);

174 for ireact=vreact ’

175 vprod = fv2p(ireact ,Sr);

176 vlistOfProducts2 = [ vlistOfProducts2 ; vprod ];

177 endfor

178 endfor

179 if size(intersect(vlistOfProducts2 , vCyc1) ,2)>0

180 d2j = 1;

181 endif

182 yesORno = j2d && d2j;

60



183 endfunction

C.8 Local function fcycType

The purpose of this algorithm is to assign each cycle its ”strength” - 1 if it is strong

cycle and 0 if it is critical cycle. All weak cycles are omitted.

Variables

Input variables
K real kinetic matrix of the whole system
S real stoichiometric matrix of the whole system
OriginalCycles positive integer
vs positive real extremal pathway
emtol positive real tolerance for floating point equality tests

Output variables
Cycles positive integer strong and critical cycles
vtypesOfCycles bool 1 if cycle is strong, 0 if critical

Local variables
B real matrix defined in Equation11
Bsmall real principal subdeterminant of B
CycsAndCosts positive integer cycles with their types (first column)
vCyc positive integer list of cycle members, no zeros
vCycle positive integer list of cycle members; zeros are present in order

to store the cycle in 1 matrix with the ones
detBsmall real determinant of Bsmall
i positive integer index - cycles
lengthOfCycles positive integer equal to number of determinant-indicated

metabolites + 2
numberOfCycles positive integer number of all cycles

Critical cycle is defined based on determinant of metrix Bsmall, which has to be

zero. However, floating point operations may result in inaccuracies. Therefore, test for

zero equality is replaced by test for absolute value, which has to be under a specified

threshold.

184 function [Cycles , vtypesOfCycles] = fcycType (OriginalCycles , vs,

S, K, emtol);

185 Cycles = [];

186 vtypesOfCycles = [];

187 [numberOfCycles ,lengthOfCycles]=size(OriginalCycles);

188 B = -S*diag(vs)*K’

189 for i=1: numberOfCycles

61



190 vCycle = OriginalCycles(i,:);

191 vCyc = unique(vCycle(find(vCycle)));

192 Bsmall = B(vCyc ,vCyc);

193 detBsmall = det(Bsmall);

194 if abs(detBsmall) < emtol

195 Cycles = [ Cycles ; vCycle ];

196 vtypesOfCycles = [ vtypesOfCycles ; 0 ];

197 elseif detBsmall < -emtol

198 Cycles = [ Cycles ; vCycle ];

199 vtypesOfCycles = [ vtypesOfCycles ; 1 ];

200 endif

201 endfor

Sorting the cycles according to their strength.

202 if size(vtypesOfCycles ,1) >0

203 CycsAndCosts = [vtypesOfCycles Cycles];

204 CycsAndCosts = flipud(sortrows (CycsAndCosts));

205 vtypesOfCycles = CycsAndCosts(:,1);

206 Cycles = CycsAndCosts(:,2:lengthOfCycles+1);

207 endif

208 endfunction

C.9 Local function fexitFinder

We cannot exclude possibility occurence of critical cycles of determinant-indicated

metabolites without an exit reactions. These would be composed of type W species,

which are indicated by determinant. This function finds exit reactions of all the

previously found critical cycles.

Variables

The algorithm presumes all cycles to lack exit reaction until it finds one. Then it

literally checks for Y species by finding it. This whole operation seems to be redundant,

since fdecide1BCmust also find Y However, the check must be done in advance and

outsourcing of this procedure simplifies the main function and fdecide1BC.

209 function Cycles = fexitFinder(Cycles , Sl, vmind)

210 [numberOfCycles ,lengthOfCycles]=size(Cycles);

211 vnoExit = ones(numberOfCycles , 1);

212 vlistReactants = [];

213 for iCycle=1: numberOfCycles

214 vCycle = Cycles(iCycle ,:);

215 vCyc = vCycle(find(vCycle));

216 for imetab=vCyc

62



Input variables
Cycles positive integer found critical cycles
Sl real left stoichiometric matrix (studied subsystem)
vmind positive integer determinant-indicated species (indices)

Output variables
Cycles positive integer cycles possessing exit reactions

Local variables
vCyc positive integer without zeros
vCycle positive integer line in Cycles corresponding to 1 cycle
vnoExit bool 1 if cycle has no exit and is to be deleted
vreactants positive integer metabolite indices
vlistReactants positive integer metabolite indices
vreact positive integer metabolite indices
vreactants positive integer reaction indices
vy positive integer indices of species of type Y
iCycle positive integer index - cycles
imetab positive integer index - metabolites
ireaction positive integer index - reactions
numberOfCycles positive integer number of all cycles
lengthOfCycles positive integer equal to number of determinant-indicated

metabolites + 2

217 vreact = fr2v(imetab ,Sl);

218 if size(vreact ,1) > 0

219 for ireaction=vreact ’

220 vreactants = fv2r(ireaction ,Sl);

221 vlistReactants = [vlistReactants; vreactants

];

222 endfor

223 vy = setdiff(intersect(vmind ,vlistReactants),

vCyc);

224 if size(vy ,2) >0

225 vnoExit(iCycle) = 0;

226 endif

227 endif

228 endfor

229 endfor

230 Cycles(find(vnoExit) ,:) = [];

231 endfunction

63



C.10 Local function fdecide1BC

This function dicides between category 1B and 1C. It searches for Y species and then

for the first species of type Z, which is produced as by-product by the autocatalytic

cycle and there is a pathway of reactions from Z to Y. All the species on this pathaway

are classified as of type Z too. The length of this pathway (number of Z species) must

be at least 1 and at most equal to the number of species not indicated by determinant.

Lists of Y species and Z species are generally vectors, but excluding rare pathological

cases Y is scalar.

Variables

Input variables
Sl real left stoichiometric matrix of the extremal pathway
Sr real right stoichiometric matrix of the extremal pathway
vcycle positive integer indices of X species
vmind positive integer indices of all species indicated by determinant

Output variables
vy positive integer list of Y species indices
vz positive integer list of Z species indices
type (12|13) determined type

Local variables
vmNind positive integer metabolites not indicated by determinant
vlistReactants positive integer candidates for Y species
vlistReactantsy positive integer reactants in reactions producing Y
vlistReactions positive integer exit reactions
vlistReactionsy positive integer reaction in which Y is produced
vproducts positive integer reaction indices
vreact positive integer metabolite indices
vreactants positive integer metabolite indices
vzx positive integer initial points for Z species search
vzy positive integer terminal points for Z species search
imetab positive integer index - metabolites
ireaction positive integer index - reactions

Metabolite of type Y is identified. First, reactions in which X species are both

reactants and products are sampled.

232 function [typ , vy, vz] = fdecide1BC(vcycle , Sl, Sr, vmind)

233 vmNind = setdiff (1: size(Sl, 1),vmind);

234 vlistReactions = [];

235 for imetab=vcycle

236 vreact = fr2v(imetab ,Sl);

64



237 for ireaction=vreact ’

238 vproducts = fv2p(ireaction ,Sr);

239 if size(intersect(vcycle ,vproducts) ,2)==0

240 vlistReactions = [vlistReactions; ireaction];

241 endif

242 endfor

243 endfor

Reactants entering these reactions which are not involved in the autocatalytic cycle

are of type Y. Rare pathological case of more than 1 Y is signalized.

244 vlistReactants = [];

245 for ireact=vlistReactions ’

246 vreactants = fv2r(ireact ,Sl);

247 vlistReactants = [vlistReactants; vreactants];

248 endfor

249 vy = setdiff(intersect(vlistReactants , vmind), vcycle);

250 if size(vy ,2) > 1

251 warning ("more metabolites of type Y");

252 endif

Find all species not indicated by determinant from which Y is produced. In the

first for loop, all reactions where Y is created are sampled. In the second for loop,

all reactants entering these reactions are sampled. Possibility of Y production directly

as a by-product of autocatalytic cycle is forbidden. Y species must be produced via a

pathway of Z species. vzymeans literally vector of (candidate) Z species determined

based on species Y.

253 vlistReactionsy = [];

254 vlistReactantsy = [];

255 for imetab=vy

256 vreact = fp2v(imetab ,Sr);

257 vlistReactionsy = [vlistReactionsy; vreact];

258 endfor

259 for ireact=vlistReactionsy ’

260 vreactant = fv2r(ireact ,Sl);

261 vlistReactantsy = [vlistReactantsy; vreactant];

262 endfor

263 vzy = setdiff(vlistReactantsy ,vmind);

All the species produced by the critical cycle as by-products which are not indicated

by determinants are sampled. Produced as a by-product means that they are products

of some of the reactions involved in the critical cycle.

264 vzx = [];

265 for imetab=vcycle

65



266 vreact = fr2v(imetab ,Sl);

267 for ireaction=vreact ’

268 vproducts = fv2p(ireaction ,Sr);

269 if size(intersect(vcycle ,vproducts) ,2)>0

270 vzx = [vzx; setdiff(vproducts ,vcycle) ’];

271 endif

272 endfor

273 endfor

Finally, all pathways from non-indicated metabolites originating in the critical cycle

are explored. If any of the pathways leads to Y, these species are of type Z.

274 [yesORno , vz] = fZFinder (vzx, vmind , vmNind , vzy , Sl, Sr)

275 if yesORno

276 typ = 12;

277 else

278 typ = 13;

279 endif

280 endfunction

C.11 Local function fdecide2BC

This function decides between category 2B and 2C.

Variables

Input variables
Sl real left stoichiometric matrix of the extremal pathway
Sr real right stoichiometric matrix of the extremal pathway
vcycle positive integer indices of X species
vmind positive integer indices of all species indicated by determinant

Output variables
vz positive integer list of Z species indices
type (22|23) determined type

Local variables
vlistReactants positive integer reactnts in exit reactions
vlistReactions positive integer possible exit reactions
vreact positive integer metabolite indices
vzx positive integer initial points for Z species search
vzz positive integer terminal points for Z species search
imetab positive integer index - metabolites
ireact positive integer index - reactions
numberOfMetabs positive integer number of all metabolites in the studied subsystem

66



The algorithm is different from that in function fdecide1BC in that no species of

type Y is present. Therefore, species taking part in exit reaction is not indicated by

determinant. First, all species taking part in exit reactions are identified.

281 function [typ , vz] = fdecide2BC(vcycle , Sl, Sr, vmind)

282 vy = []

283 vlistReactions = [];

284 for imetab=vcycle

285 vreact = fr2v(imetab ,Sl);

286 vlistReactions = [vlistReactions; vreact];

287 endfor

288 vlistReactants = [];

289 for ireact=vlistReactions ’

290 vreact = fv2r(ireact ,Sl);

291 vlistReactants = [vlistReactants; vreact];

292 endfor

293 vzz = setdiff(vlistReactants , vmind);

In analogy with fdecide1BC, all the by-products of autocatalytic cycle are sampled.

294 vzx = [];

295 numberOfMetabs = size(Sl, 1);

296 vmNind = setdiff (1: numberOfMetabs ,vmind);

297 for react=vlistReactions ’

298 vprod = fv2p(react ,Sr)

299 if (size(intersect(vprod ,vmind)) >0) && (size(setdiff(vprod ,

vmind) ,2) >0)

300 vzx = [vzx; (setdiff(vprod ,vmind))];

301 endif

302 endfor

Similarly to fdecide1BC , all paths from autocatalytic cycle need to be explored.

303 [yesORno , vz] = fZFinder (vzx, vmind , vmNind , vzz , Sl, Sr)

304 if yesORno

305 typ = 22;

306 else

307 typ = 23;

308 endif

309 endfunction

C.12 Local function fZFinder

fZFinderexplores all the pathways from a specified set of metabolites. This subroutine

is very similar to fcycFinder. There are two main differences. First, fZFinderexplores

pathways of species not indicated by determiant. Second, search is successful if one

67



of the defined terminal points is reached, in contrast to fcycFinder. Similarly to

fcycFinder, fZFinderhas its own subroutine for path extension.

Variables

Input variables
Sl real left stoichiometric matrix of the extremal pathway
Sr real right stoichiometric matrix of the extremal pathway
vmind positive integer all species indicated by determinant
vmNind positive integer all species not indicated by determinant
vzx positive integer set of indices of species

not indicated by determinant
vzz positive integer set of indices of species

not indicated by determinant

Output variables
vz positive integer list of indices of Z species
yesORno bool 1 if there is a path from vzxto vzz

Local variables
ExtendedPaths positive integer all paths created by fextendPath

by extendeding 1 path
Paths positive integer all paths starting in set vzx
TempPaths positive integer paths changing each iteration
vpath positive integer one path beginning in one of vzx metabolites
extPathsNumber positive integer number of extended paths

extended by one metabolite from one shorter path
i positive integer index - length of paths
j positive integer index - all metabolites not indicated by determinant
k positive integer index - paths
numberNind positive integer number of metabolites not indicated by determinant

310 function [yesORno , vz] = fZFinder (vzx , vmind , vmNind , vzz , Sl,

Sr)

311 yesORno = 0;

312 vz = [];

313 if size(vzx ,1)==0

314 return;

315 endif

316 numberNind = size(vmNind ,2);

317 Paths = zeros(size(vzx ,1),numberNind);

318 Paths(:,1) = vzx;

319 for i=2: numberNind

320 TempPaths = [];

68



321 for j=1: size(Paths ,1)

322 ExtendedPaths = fextendPath(i,Paths(j,:),Sl,Sr,vmind ,

vmNind);

323 extPathsNumber = size(ExtendedPaths ,1);

324 for k=1: extPathsNumber

325 vpath = ExtendedPaths(k,:);

326 if ismember (vpath(i),vzz)

327 yesORno = 1;

328 vz = unique(vpath(find(vpath)));

329 return

330 endif

331 endfor

332 TempPaths = [ TempPaths ; ExtendedPaths ];

333 endfor

334 Paths = TempPaths;

335 endfor

336 endfunction

C.13 Local function fextendPath

This function extends paths for fZfinder. It is similarl to fetendCycle. It gets a path

of species not indicated by determinant and returns all its extensions.

Variables

Input variables
Sl real left stoichiometric matrix (studied subsystem)
Sr real right stoichiometric matrix (studied subsystem)
vmind positive integer determinant-indicated metabolites
vmNind positive integer metabolites not indicated by determinant
vpath positive integer path to be extended
i positive integer length of input path + 1

Output variables
ExtendedPaths positive integer extended paths

Local variables
vprod positive integer products of a reaction (output of fv2p
vreact positive integer all reactions of a metabolite

where the metabolite enters as a reactant
iprod positive integer index - metabolites
ireact positive integer index - reactions

69



337 function ExtendedPaths = fextendPath(i,vpath ,Sl,Sr,vmind ,vmNind)

338 ExtendedPaths = [];

339 if vpath(i-1) == 0

340 return;

341 endif

342 vreact = fr2v(vpath(i-1),Sl);

343 for ireact = vreact ’

344 vprod = fv2p(ireact ,Sr);

345 for iprod=vprod ’

346 vpath(i) = iprod;

347 if ismember (iprod , vmNind)

348 ExtendedPaths = [ ExtendedPaths ; vpath ];

349 endif

350 endfor

351 endfor

352 endfunction

C.14 Local functions fv2r, fv2p, fp2vand fr2v

These extensively used simple functions perform the operations of network exporation.

Each of them contains only 1 local variable, which has meaning of index of the input

reaction or metabolite.

353 function vreactions = fr2v(metab ,Sl)

354 irow = (Sl(metab ,:))’;

355 vreactions = find(irow > 0);

356 endfunction

357 function vreactions = fp2v(metab ,Sr)

358 irow = (Sr(metab ,:))’;

359 vreactions = find(irow > 0);

360 endfunction

361 function vprod = fv2p(react ,Sr)

362 icol = Sr(:,react);

363 vprod = find(icol > 0);

364 endfunction

365 function vreact = fv2r(react ,Sl)

366 icol = Sl(:,react);

367 vreact = find(icol > 0);

368 endfunction

70



D Documentation for the function hopfSearch

D.1 Dependency diagram

D.2 Main function

Genetic programming approach to finding Hopf bifurcation. Evolution diagram is in

Figure 3.1.5.

It is important to mention here, that input matrix B is here defined as

B = ν diag(e) κT (12)

with no minus sign unlike in Equation 11.

Variables

1 function [vbestConc , yesORno] = hopfSearch(B, vmind , vpars ,

popSize , noGenerations , mutate , minNind , maxNind , minInd ,

maxInd , offspringSize , enrichSize)

2 if nargin == 2

3 vpars = [0.1 100 10 30 10 20 10];

4 mutate = 0.05;

5 noGenerations = 5000;

6 popSize = 200;

7 minNind = 0.1;

8 maxNind = 1;

9 minInd = 10;

10 maxInd = 100;

71



Input variables
B real matrix B
vmind positive integer indices of essential species
vpars real parameters for fitness function
enrichSize positive integer number of newly generated individuals

for enriching genofond
maxInd positive real maximum inverse concentration of essential species
maxNind positive real maximum inverse concentration of non-essential species
minInd positive real minimum inverse concentration of essential species
minNind positive real minimum inverse concentration of non-essential species
mutate real parameter for mutation
noGenerations positive integer maximum number of generations
offspringSize positive integer size of population after crossover

before selection
popSize positive integer size of population (before mutations)

Output variables
vbestConc positive real vector of inverse concentrations

closest to Hopf bifurcation point
yesORno bool found supercritical Hopf bifurcation

Local variables
AfterMutation positive real survivors of mutation test
Population positive real survivors of previous selections
LotsOfOffspring positive real offspring before selection
i positive integer index - generations

11 offspringSize = 400;

12 enrichSize = 20;

13 endif

14 yesORno = 0;

15 sizeofB = size(B,1);

16 Population = fgenerate(popSize , sizeofB , vmind , minNind , maxNind

, minInd , maxInd);

17 for i=1: noGenerations

18 AfterMutation = fmutate(Population , mutate , vpars , B);

19 LotsOfOffspring = fcrossover(AfterMutation , offspringSize ,

enrichSize , vmind , minNind , maxNind , minInd , maxInd);

20 [yesORno , Population] = fsortThem(LotsOfOffspring , popSize ,

vpars , B);

21 if yesORno == 1

22 vbestConc = Population(1,:);

23 break;

24 endif

25 endfor

72



26 endfunction

D.3 Local function fmutate

This functions mutates each vector in population and then evaluates change in the

fitness. Better individual of the pair original - mutant is selected.

Variables

Input variables
B real matrix B
Populations positive real input population
vpars real parameters for fitness function
mutate positive real parameter of mutaiton fucntion

Output variables
AfterMutation positive real output population - improved

Local variables
BasisPart positive real contribution to mutation matrix
Mutants positive real mutated population
MutMultiply real mutation matrix
RandomPart positive real random contribution to mutation matrix

27 function AfterMutation = fmutate(Population , mutate , vpars , B)

28 [m,n]=size(Population);

29 BasisPart = (1 -0.5* mutate)*ones(m,n);

30 RandomPart = mutate*rand(m,n);

31 MutMultiply = BasisPart + RandomPart;

32 Mutants = Population .* MutMultiply;

33 AfterMutation = fcompareThem(Population , Mutants , vpars , B);

34 endfunction

D.4 Local function fcrossover

This functions generates offspring by linear combinations of parents. Parents are

selected randomly and for each pair, and new vector is calculated as

vnew = av1 + (1− a)v2

where a is a random number between 0 and 1, v1 and v2 are the parents.

Variables

The loop in this function is easy to vectorize, I here did not do so for clarity.

73



Input variables
Survivors positive real input survivors population
vmind positive integer indices of essential species
enrichSize positive integer number of individuals enriching genofond
maxInd positive real maximum inverse concentration

of essential species
maxNind positive real maximum inverse concentration

of non-essential species
minInd positive real minimum inverse concentration

of essential species
minNind positive real minimum inverse concentration

of non-essential species
offspringSize positive integer size of offspring population

Output variables
Offspring positive real output offspring population

Local variables
Enriching positive real population of newly generated vectors
Parent1 positive real parental population 1
Parent2 positive real parental population 2 (randomly chosen)
WithNew positive real population of survivors + newly generated vectors
i positive integer index - offspring
m positive integer size of input population
n positive integer size of a inverse concentration vector
lc positive real (0-1) coefficient of linear combination

35 function Offspring = fcrossover(Survivors , offspringSize ,

enrichSize , vmind , minNind , maxNind , minInd , maxInd)

36 [m,n]=size(Survivors);

37 Enriching = fgenerate(enrichSize , n, vmind , minNind , maxNind ,

minInd , maxInd);

38 Parent1 = zeros(offspringSize ,n);

39 Parent2 = zeros(offspringSize ,n);

40 Offspring = zeros(offspringSize ,n);

41 WithNew = [Survivors; Enriching];

42 for i=1: offspringSize

43 Parent1(i,:) = Survivors(mod(i,m)+1,:);

44 Parent2(i,:) = WithNew(ceil(rand(1)*(m+enrichSize)) ,:);

45 lc = rand(1);

46 Offspring(i,:) = lc*Parent1(i,:) + (1-lc)*Parent2(i,:);

47 endfor

48 endfunction

74



D.5 Local function fSortThem

This function sorts all the vectors in new generation according to their fitness and

selectes those with best fitness.

Variables

Input variables
B real matrix B
LotsOfOffspring positive real input offspring population
vpars real parameters for fitness function
popsize positive integer size of survivor population

Output variables
Population positive real output survivor population
yesORno bool was found super critical Hopf bifurcation?

Local variables
PopWCosts real offspring population with futness in 1st column
SortedPop positive real offspring population sorted according to fitness
vfitness real fitness functions for offspring
i positive integer index - offspring
m positive integer size of input population
n positive integer size of an individual vector
theBestOne real best fitness function value
threshold real threshold for Hopf bifurcaiton

49 function [yesORno , Population] = fsortThem(LotsOfOffspring ,

popSize , vpars , B)

50 threshold = vpars(2) + vpars(4) + vpars(6);

51 [m,n] = size(LotsOfOffspring);

52 vfitness = zeros(m,1);

53 for i=1:m

54 vfitness (i) = ffitness (LotsOfOffspring(i,:), vpars , B);

55 endfor

56 PopWCosts = [ vfitness LotsOfOffspring ];

57 SortedPop = flipud(sortrows (PopWCosts));

58 Population = SortedPop(1:popSize , 2:(n+1));

59 theBestOne = SortedPop(1,1)

60 if theBestOne >= threshold

61 yesORno = 1;

62 else

63 yesORno = 0;

64 endif

65 endfunction

75



D.6 Local function fcompareThem

This function is used to compare each individual with its mutant. Individual with

better fitness is selected.

Variables

Input variables
B real matrix B
Population positive real input population of survivors
vpars real parameters for fitness function
Mutants positive real input population of mutant

Output variables
Survivors positive real better of mutant — original survivor

Local variables
i positive integer index - population
m positive integer size of population

66 function Survivors = fcompareThem(Population , Mutants , vpars , B)

67 m = size(Population ,1);

68 Survivors = Population;

69 for i=1:m

70 if ffitness (Population(i,:),vpars , B) < ffitness (Mutants(i

,:),vpars , B)

71 Survivors(i,:) = Mutants(i,:);

72 endif

73 endfor

74 endfunction

D.7 Local function fgenerate

Variables

Vectors are generated randomly with uniform distribution between maximum and

minimum values (default or specified on input). Different maximum and minimum

values are for essential and non-essential species.

75 function Population = fgenerate(popSize , sizeofB , vmind , minNind

, maxNind , minInd , maxInd);

76 BasisPart = minNind*ones(popSize , sizeofB);

77 RandomPart = (maxNind -minNind)*rand(popSize , sizeofB);

78 Population = BasisPart + RandomPart;

79 vbasisPart = ones(popSize ,1)*minInd;

76



Input variables
maxInd positive real maximum inverse concentration

of essential species
maxNind positive real maximum inverse concentration

of non-essential species
minInd positive real minimum inverse concentration

of essential species
minNind positive real minimum inverse concentration

of non-essential species
popSize positive integer desired size of generated population
sizeofB positive integer size of matrix B
vmind positive integer indices of essential species

Output variables
Population positive real output population

Local variables
BasisPart positive real non-random contribution to generated population
RandomPart positive real random contribution to generated population
vbasisPart positive real analogue of row in BasisPart

but for essential species
i positive integer index - essential species

80 for i=vmind

81 Population(:,i) = vbasisPart + rand(popSize , 1)*(maxInd -

minInd);

82 endfor

83 endfunction

D.8 Local function ffitness

Variables

Fitness function is given in Equation ... It is based on evaluation of eigenvalues, which

is the time determining step of the algorithm.

84 function fitness = ffitness (vh, vpars , B)

85 m = size(B,1);

86 thresholdRatio = vpars(1);

87 fitness = 0;

88 H = diag(vh);

89 Jacobi = B*H;

90 veig = eig(Jacobi);

91 vim = imag(veig);

92 vre = real(veig);

77



Input variables
B real matrix B
vh positive real inverse concentration vector
vpars real vector of parameters for fitness function

Output variables
fitness real fitness function fo vector vh

Local variables
H diagonal real diagonal matrix of inverse concentrations
Jacobi real Jacobian matrix
veig complex vector of eigenvalues
veigDiffs positive real distances between real eigenvalues
vim real vector of real parts of eigenvalues
vimIms positive real real parts of complex eigvals
vimInds positive integer indices of eigenvalues with

non-zero imaginary parts
vposRes positive integer indices of positive real eigenvalues
vposs positive real positive real eigenvalues
vratios positive real ratios of real and imaginary parts
vre real vector of imaginary parts of eigenvalues
vreIms positive real imaginary parts of complex eigenvaluesvals
vreRes real pure real eigenvalues
m positive integer size of matrix B
minDiff positive real minimum distance between real eigenvalues
rri positive real positive real eigenvalue
theSmallestOne positive real complex eigenvalue

with real part closest to zero
thresholdRatio positive real minimum ratio of imaginary and real aprt

93 vimInds = find(vim);

94 vreRes = vre(find(vim==0));

95 if size(vimInds)>0

96 fitness += vpars(2);

97 vreIms = abs(vre(vimInds));

98 vimIms = abs(vim(vimInds));

99 vratios = vreIms ./ vimIms;

100 theSmallestOne = min(vratios);

101 if theSmallestOne < thresholdRatio

102 fitness += vpars(6);

103 else

104 fitness += vpars(7)*exp(-theSmallestOne);

105 endif

106 else

107 veigDiffs = ([ 0 ; vre ] - [ vre; 0 ])(2:m);

78



108 minDiff = min(abs(veigDiffs));

109 fitness += vpars(3)*exp(-minDiff);

110 endif

111 vposRes = find(vreRes >0);

112 if size(vposRes ,1) == 0

113 fitness += vpars(4);

114 else

115 vposs = vreRes(vposRes);

116 for rr=vposs ’

117 fitness += (-vpars(5))*exp(rr);

118 endfor

119 endif

120 endfunction

79


	INTRODUCTION
	THEORETICAL PART
	Chemical Reaction Networks
	Stoichiometric Network Analysis
	Classification of Chemical Oscillators

	COMPUTATIONAL PART
	Implementation
	Stoichiometric Matrix Converter
	Decomposition into Extreme Pathways
	Stability of Extreme Pathways
	Classification of Potential Chemical Oscillators
	Identification of Hopf Bifurcations

	Mitogen-Activated Protein Kinase Cascade
	Continuous Flow System of H2O2 - S2O32- - SO32-
	Oscillations of Hydrogen Peroxide in the Atmosphere
	Modified Belousov-Zhabotinsky System
	Chemical Reactors with Mass Transfer

	DISCUSSION AND CONCLUSIONS
	BIBLIOGRAPHY
	LIST OF ABBREVIATIONS
	APPENDICES
	Documentation for the function edgeSearch 
	Dependency diagram
	Main function
	Local function fproduceZeros
	Local function fcombine
	Local function fiterCheck
	Local function fcheck

	Documentation for the function stability 
	Dependency diagram
	Main function
	Local function fsafeTime

	Documentation for the function oscilClasses 
	Dependency diagram
	Main function
	Local function fold2new 
	Local function fcycFinder 
	Local function fextendCycle 
	Local function flinkFinder 
	Local function fareLinked 
	Local function fcycType 
	Local function fexitFinder 
	Local function fdecide1BC 
	Local function fdecide2BC 
	Local function fZFinder 
	Local function fextendPath 
	Local functions fv2r, fv2p, fp2vand fr2v

	Documentation for the function hopfSearch 
	Dependency diagram
	Main function
	Local function fmutate 
	Local function fcrossover 
	Local function fSortThem 
	Local function fcompareThem 
	Local function fgenerate 
	Local function ffitness 


