

Discrete relaxation path sampling of Morse clusters Boris Fačkovec and David J. Wales Department of Chemistry, University of Cambridge

Summary

A two-dimensional cluster of six Morse discs ($Morse_6^{2D}$) is a useful model system for studying self-assembly. A previous theoretical study [M2D] using discrete path sampling [DPS] qualitatively agrees with experiments [E2D].

In the present work, discrete relaxation path sampling [DRPS], a recently developed method for efficient simulation of rare events, is explained and applied to this system. The systematic approach of DRPS produces an accurate master equation at a relatively low computational cost. The results are in satisfactory quantitative agreement with experiments.

Characteristics of the system

- 6 solid polymer (polystyrene, density \sim of water) spheres with diameter of

Discrete relaxation path sampling

- links energy landscape methods [EL] with MD sampling. Rare events are studied in 5 steps:

1. space partitioning

- configuration space is fully partitioned (no void typical for reactive flux methods) - good partitioning: compact cells without significant internal barriers

2. sampling thermodynamics

- several configurations are randomly sampled from the equilibrium distribution - constrained Monte Carlo or any other enhanced sampling method that does not require a progress coordinate (parallel tempering, nested sampling etc.) can be used

about 1.3 µm are strongly bound to a coverslip of a sample cell at T = 300K - sodium dodecyl sulfate (SDS) micelles in salty water cause individual polymer cells to attract each other via depletion interactions of around bk_BT , where $b \in (1,10)$

- the system is simulated via Morse potential

 $V(r) = e^{\rho(1-r)} (e^{\rho(1-r)} - 2) ,$

where all distances are measured in $\sigma_0 = 1.3 \ \mu m$ and the energy in $\epsilon_0 = bk_B T$ with the range parameter $\rho=30$, mass $\mu_0 \sim 10^{-15}$ kg, time $\tau_0 \sim 10^{-4}$ s - evaporation of the cluster is prevented by constraining the simulation to a circular box with diameter $r_{\rm box} = 3 \sigma_0$

- the system has 4 minima (considering optical isomers)

structures of the minima

- numbers of transitions between minima are experimentally observed

- 11 states can be obtained from the minima by breaking 1 contact

- 20 additional (7-contact) structures were also considered as states for

3. constrained MD

- starting from the equilibrium distribution inside cell, random Maxwell-Boltzmann velocities - stopped after a trajectory leaves the cell; simulation run to both trajectory ends - four types of quantities are sampled, exit probabilities from cell interior and cell boundaries, mean exit times and mean boundary-to-boundary trajectory lengths

4. solving relaxation equations

- the relaxation rate from one cell to one neighbouring cell is obtained
- the pair of cells is isolated from the rest using *equilibrium* boundary conditions
- derived from decomposition of relaxation into exit and reinitiation at the boundaries
- can be propagated numerically, but an analytical solution exists \rightarrow solving linear system

DRPS; all 6- and less-contact structures were lumped into a single state - friction constant (simulating water resistance) $\gamma \sim 3000 \mu_0 / \tau_0$

Thermodynamics

- parallel tempering simulations for 13 reciprocal temperatures between

$\beta_{2} - 2 + \beta_{2} - 0$							
$p\varepsilon_0-3$ to $p\varepsilon_0-9$.	β	1	2	3	8 B	7 B	$< 7 \mathrm{B}$
	3.0	0.1	0.2	0.1	1.0	1.8	96.8
	6.0	7.6	25.5	11.9	27.8	10.7	4.5
	7.0	11.0	36.3	16.6	15.9	3.0	0.5
	8.0	10.8	41.5	19.6	7.9	0.5	0.0
	9.0	13.8	43.5	19.8	3.1	0.1	0.0

- ratio of minima (2:6:3:3) given by symmetry (rotational and vibrational degrees of freedom contribute negligibly); agrees with [E2D] and [M2D] - populations agree with [E2D] at $\beta \epsilon_0$ between 6 and 7 - depletion interaction (estimated at $\sim 2 k_B T$) might not be dominant

Dynamics

- relaxation times calculated for each pair of topological neighbours - relaxation times more reliable at lower friction \rightarrow extrapolation

5. regrouping

- if an observable state is composed of multiple DRPS states, the DRPS kinetic network must be regrouped and the DRPS states lumped

- the new graph transformation [NGT] uses reactive flux-based equation
- diagonalisation of the rate matrix is used in a relaxation-based lumping formula [RGRP]
- we are currently developing a computationally inexpensive relaxation-based lumping formula

Conclusion

- DRPS provides a hybrid methodology, which includes sampling dynamics and a master equation framework. Simulations can be systematically improved, so that the accuracy can achieve quantitative agreement with experiments.

- the centre of the shifting particle is constrained to a narrow channel (grey below); the diffusion time through this channel is so long that the particle returns back to the original position more frequently than it progresses to the product state

- calculation of the correction factor for transition state theory will be expensive \rightarrow space partitioning

Acknowledgement

Bakala Foundation Department of Chemistry King's College, Cambridge

the binding energy is probably greater than the one suggested in the original paper [E3D]

References

[DPS] Wales, 2002, Mol. Phys. 100, 3285 [DRPS] Fačkovec et al., 2015, J. Chem. Phys. 143, 044119 [E2D] Perry et al., ArXiV 1411.5680 [E3D] Meng et al., 2010, Science 159, 211 [EL] Wales, 2003, Energy landscapes, Camb. Uni. Press [M2D] Morgan and Wales, 2014, Nanoscale 6, 10717 [NGT] Wales, 2009, J. Chem. Phys. 130, 204111 [RGRP] Hummer and Szabo, J. Phys. Chem. B 119, 9029

Contact

bf269@cam.ac.uk dw34@cam.ac.uk Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom

boris.fackovec.net