Discrete relaxation path sampling of Morse clusters
 Boris Fačkovec and David J. Wales
 Department of Chemistry, University of Cambridge

Summary

A two-dimensional cluster of six Morse discs $\left(\right.$ Morse $\left._{6}{ }^{2 D}\right)$ is a useful model system for studying self-assembly. A previous theoretical study [M2D] using discrete path sampling [DPS] qualitatively agrees with experiments [E2D].

In the present work, discrete relaxation path sampling [DRPS], a recently developed method for efficient simulation of rare events, is explained and applied to this system. The systematic approach of DRPS produces an accurate master equation at a relatively low computational cost. The results are in satisfactory quantitative agreement with experiments.

Characteristics of the system

6 solid polymer (polystyrene, density \sim of water) spheres with diameter of about $1.3 \mu \mathrm{~m}$ are strongly bound to a coverslip of a sample cell at $T=300 \mathrm{~K}$ - sodium dodecyl sulfate (SDS) micelles in salty water cause individual polymer cells to attract each other via depletion interactions of around $b k_{B} T$, where $b \in(1,10)$

- the system is simulated via Morse potential

$$
V(r)=e^{\rho(1-r)}\left(e^{\rho(1-r)}-2\right),
$$

where all distances are measured in $\sigma_{0}=1.3 \mu \mathrm{~m}$ and the energy in $\varepsilon_{0}=b k_{B} T$ with the range parameter $\rho=30$, mass $\mu_{0} \sim 10^{-15} \mathrm{~kg}$, time $\tau_{0} \sim 10^{-4} \mathrm{~s}$
evaporation of the cluster is prevented by constraining the simulation to a circular box with diameter $r_{\text {box }}=3 \sigma_{0}$
-the system has 4 minima (considering optical isomers)
structures of the minima

- numbers of transitions between minima are experimentally observed - 11 states can be obtained from the minima by breaking 1 contact

20 additional (7-contact) structures were also considered as states for DRPS; all 6- and less-contact structures were lumped into a single state - friction constant (simulating water resistance) $\gamma \sim 3000 \mu_{0} / \tau_{0}$

Thermodynamics

parallel tempering simulations for 13 reciprocal temperatures between $\beta \varepsilon_{0}=3$ to $\beta \varepsilon_{0}=9$.

β	1	2	3	8 B	7 B	$<7 \mathrm{~B}$
3.0	0.1	0.2	0.1	1.0	1.8	96.8
6.0	7.6	25.5	11.9	27.8	10.7	4.5
7.0	11.0	36.3	16.6	15.9	3.0	0.5
8.0	10.8	41.5	19.6	7.9	0.5	0.0
9.0	13.8	43.5	19.8	3.1	0.1	0.0

ratio of minima (2:6:3:3) given by symmetry (rotational and vibrational degrees of freedom contribute negligibly); agrees with [E2D] and [M2D] populations agree with [E2D] at $\beta \varepsilon_{0}$ between 6 and 7
depletion interaction (estimated at $\sim 2 k_{B} T$) might not be dominant

Dynamics

relaxation times calculated for each pair of topological neighbours - relaxation times more reliable at lower friction \rightarrow extrapolation

kinetic Monte Carlo used to get the number of transitions

	$\mathrm{T} \leftrightarrow \mathrm{C}$	$\mathrm{T} \leftrightarrow \mathrm{P}$	$\mathrm{C} \leftrightarrow \mathrm{P}$
expt.	55	63	140
$\beta \varepsilon_{0}=6$	300	1000	1800
$\beta \varepsilon_{0}=7$	130	220	530
$\beta \varepsilon_{0}=8$	60	80	200

rounded numbers of transitions per 26 hours

Acknowledgement

Bakala Foundation
Department of Chemistry
King's College, Cambridge

Discrete relaxation path sampling

- links energy landscape methods [EL] with MD sampling. Rare events are studied in 5 steps:

1. space partitioning

- configuration space is fully partitioned (no void typical for reactive flux methods) - good partitioning: compact cells without significant internal barriers

2. sampling thermodynamics

- several configurations are randomly sampled from the equilibrium distribution
- constrained Monte Carlo or any other enhanced sampling method that does not require a progress coordinate (parallel tempering, nested sampling etc.) can be used

3. constrained MD

- starting from the equilibrium distribution inside cell, random Maxwell-Boltzmann velocities - stopped after a trajectory leaves the cell; simulation run to both trajectory ends - four types of quantities are sampled, exit probabilities from cell interior and cell boundaries, mean exit times and mean boundary-to-boundary trajectory lengths

4. solving relaxation equations

- the relaxation rate from one cell to one neighbouring cell is obtained
- the pair of cells is isolated from the rest using equilibrium boundary conditions - derived from decomposition of relaxation into exit and reinitiation at the boundaries - can be propagated numerically, but an analytical solution exists \rightarrow solving linear system

5. regrouping

- if an observable state is composed of multiple DRPS states, the DRPS kinetic network must be regrouped and the DRPS states lumped
- the new graph transformation [NGT] uses reactive flux-based equation
- diagonalisation of the rate matrix is used in a relaxation-based lumping formula [RGRP] - we are currently developing a computationally inexpensive relaxation-based lumping formula

Conclusion

- DRPS provides a hybrid methodology, which includes sampling dynamics and a master equation framework. Simulations can be systematically improved, so that the accuracy can achieve quantitative agreement with experiments.
- the centre of the shifting particle is constrained to a narrow channel (grey below); the diffusion time through this channel is so long that the particle returns back to the original position more frequently than it progresses to the product state
- calculation of the correction factor for transition state theory will be expensive \rightarrow space partitioning
- the binding energy is probably greater than the one suggested in the original paper [E3D]

References

[DPS] Wales, 2002, Mol. Phys. 100, 3285

[DRPS] Fačkovec et al., 2015, J. Chem. Phys. 143, 044119
[E2D] Perry et al., ArXiV 1411.5680
[E3D] Meng et al., 2010, Science 159, 211
[EL] Wales, 2003, Energy landscapes, Camb. Uni. Press [M2D] Morgan and Wales, 2014, Nanoscale 6, 10717 [NGT] Wales, 2009, J. Chem. Phys. 130, 204111
[RGRP] Hummer and Szabo, J. Phys. Chem. B 119, 9029

Contact

bf269@cam.ac.uk dw34@cam.ac.uk Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom boris.fackovec.net

