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The grouping problem Relaxation approach

Energy landscapes studies are performed in three consecutive steps: Let us study a system given by a rate matrix of order n with eigenvalues A, .. A,;, and

1. Partitioning of configuration space into cells corresponding to Markov eigenvectors ¢y .. ¢,;. Using eigenvalue decomposition ot the rate matrix the flux

states (usually basins of local minima, [EL]) expression can be rewritten as (¢; denotes overlap of ¢, with state A)

2. Construction of the rate matrix for the master equation [ME] (most KIST — 3}2 ?t(;) a=— xe: Y i

It can be also easily shown that the rate constant based on integration of the relaxation

conveniently using transition state theory [1S1] with harmonic
superposition approximation; traditionally by Markov state modeling

[MSM| with some treatment of the embedding problem [EMB]|, more

time for transition from A in equilibrium to equilibrium between A and B 1s

accurately by discrete relaxation path sampling [DRPS]) pon = (Pp)°
3. Extracting observables from the rate matrix (commonly [DPS] by "2_:1 %3 i
regrouping of states [RGRP]| and a graph transtormation [NG'T']) i=1 " a€A

The characteristic properties of the rate matrices arc This result 1s equal to the result previously found by Hummer and Szabo [EXCT].

1. Size: often of order >10°
2. Condition number: very large [SaW]| Relaxulg algorlthm

3. Sparseness: the number of relevant transition states 1s usually about . . . . L. .
. .. ince eigenvalue (or singular value) decomposition of rate matrices is very inaccurate due to
t h ber of the relevant S genvalue ( oul lue) d posit f rat t ry te due t
wice the number of the relevant minima . . L :
poor conditioning and expensive due to matrix size, we propose a numerically stable and

L. . cheaper algorithm for calculating relaxation times. The algorithm 1s a combination of a
There are two distinct 1ssues of the grouping problem . . .
. . linear propagation of population
1. Galculation problem: How to efliciently and accurately calculate the

.. . pi(mAt) Ztu (At)pi[(m — 1)At]
rates for the transitions between observables from the rate matrix?

2. Groupin roblem: How to identify groups of states formin .. Lo . . .
pms P . v 8o 5 (where population 1n state ¢ at time m Af, where m 1s an integer, and /;{A7) 1s an element of the
metastable sets, so that a particle stays a long time withing the group betfore . . o . . . .

e e . . . L transition matrix) and a multiplication of a transition matrix by itself corresponding to
transitioning into another group? This (clustering) problem 1s also studied 1n . . . . . L .
. . . doubling the timescale described by the transition matrix. Arbitrarily long timescales can be
machine learning community [ML,].

reliably reached
We propose solutions to both problems
1. Relaxation approach for extracting observables, inspired by Rel d . .
€ilaxe€d recursive regrouping
DRPS
2. A relaxed recursive regrouping [RRR], which 1s an mproved e
version of a similar algorithm ("REGROUPFREE" [RGRP]) previously Rate matrix
developed 1n our laboratory. Regrouping rate
L threshold D
4 N (oo
Re-index (delete Fm;i ihe p?:;; .
1 line and column $ | States wi
in rate matrix) argest smaller
Breakdown of TST N )\ _rate consant
For pathological cases, flux-based expressions for rates will give nonsensical (Calfl:};% gf;t:: to ) ﬁ:ate\ Ol]ji:fgt’?r:
results (modify 1 line <Y: than groups
and column in Rate

threshold
\_ rate matrix) / \\?/ matrix
Boundary conditions
When extracting a pair of grouped states from the whole matrix, proper boundary
conditions must be imposed at the interface between relaxing states and the neighbours:
1. no-flux boundary conditions: transitions between relaxing states and neighbours that

are not 1nvolved 1n relaxation are disregarded completely = lower bound for the rate.

I(-e) 1(-2¢) (-
A = B - C =D A= B= C _ D _ E 2. fast-equilibration boundary conditions: rates to the neighbours speed up
1 S S I 1(-e) 1(-2e) 8(1-3¢) equilibration within relaxing states = upper bound for the rate.
Boundaries between experimentally observed states (defined by a macroscopic .
quantity, e.g. FRET intensity) rarely coincide exactly with optimal transition Conclusion
states between superbasins. Hence REGROUPFREE will heavily, depend on 1. We have developed a successtul method for calculating rates between grouped states.

a regrouping threshold used, making interpretation of results more difficult. 2. We have devised a numerically accurate algorithm for relaxation.
3. By imposing different conditions, we can determine the interval for the exact value.

The recursive REGROUPFREL algorithm will also neglect diffusion-like 4. We have developed a recursive algorithm scaling almost linearly with size of the studied
repetitive transitions, which significantly reduce the overall rates. sparse rate matrix.
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