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• large separation of smallest and largest time scales
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Transition state theory
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• cell-to-cell rate 
constant in DRPS is 
based on relaxation:
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peptide dynamicspolymer reversal polymer translocation

where the unnecessary constant terms are ignored. kB is the
Boltzmann constant and T is the absolute temperature. !1!
and !2! are the values of !! in regions I and II, respectively.
Fm exhibits a free energy barrier as a function of m. The
nature of the free energy barrier depends on "i# conforma-
tional statistics on both regions, and "ii# value of the chemi-
cal potential mismatch $% relative to the entropic part &first
two terms on the right-hand side of Eq. "2#'. The results are
illustrated in Figs. 2 and 3. When $%!0, the barrier is sym-
metric in f!m/N if the size exponent is the same in both
regions. For (1)(2 , the barrier becomes asymmetric. The
free energy minima are downhill from I to II if the chain is
more compact in II than in I. This is illustrated in Fig. 2 by
taking !1!!0.9, !2!!0.5, and N$%/kBT!"3.0. On the
other hand, the free energy minima are uphill if the chain is
more compact in I. This is illustrated in Fig. 2 by taking
!1!!0.5, !2!!0.9, and N$%/kBT!3.0. By keeping the same
value of ( in both regions, the free energy barrier can be
made asymmetric if $%)0, as illustrated in Fig. 3 with !1!
!0.69!!2! .

Following the usual arguments of the nucleation
theory,13 the transport of the chain through the barrier is
described by

*

*t Wm" t #!km"1Wm"1" t #"km!Wm" t #"kmWm" t #

#km#1! Wm#1" t #, "3#

where Wm is the probability of finding a nucleus of m seg-
ments in region II. km is the rate constant for the formation
of a nucleus with m#1 segments from a nucleus with m
segments. km! is the rate constant for the decay of a nucleus
with m segments into a nucleus of m"1 segments. Using the
detailed balance to express km#1! in terms of km and adopting
m to be a continuous variable, we get
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*
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*
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As mentioned above, we assume that the rate constant km is
independent of m "because we deal here with only ho-
mopolymers#, and is dictated by the ratchet potential arising
from the details of the pore. Under this condition, valid for
the experimental problem addressed in this paper, km is taken
to be a nonuniversal constant k0 independent of N. Therefore
Wm is given by

*
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It follows14 from Eq. "6# that the mean first passage time +
for the process described by Eq. "6#, i.e., the average time
required by the chain, having already placed at least one
segment in region II, to go from region I to region II is
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The limits 0 and N are actually 1 and N"1, respectively, and
N in the following formulas should be replaced by (N"2) if
one is interested in small values of N. Substituting Eq. "2# in
Eq. "7#, the general results are given in Fig. 4, where + "in

FIG. 1. Polymer escape in transition.

FIG. 2. Plot of Fm in units of kBT against f. Curves represent: solid line,
N$%/kBT!0, !1!!0.5!!2! ; long-dashed line, N$%/kBT!"3, !1!!0.9,
!2!!0.5; dashed line, N$%/kBT!"3, !1!!0.5, !2!!0.9.

FIG. 3. Plot of Fm in units of kBT against f for !1!!0.69!!2! . Curves
represent: solid line, N$%/kBT!0; long-dashed line, N$%/kBT!"1;
dashed line, N$%/kBT!"1.
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From Sinai billiards to folding
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