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Rare events in nature
• ratio of the largest and lowest relevant timescales    1

molecular vibration  
(~1 fs)

elongation of  
protein chain (~40 ms)

folding 
(~1 ms)

(another definition: computer time > patience)

�
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Towards dynamics of rare events

• coarse-graining / rigidification 

• biasing the potential (metadynamics, …) 

• efficient sampling in the trajectory space (TPS) 

• space partitioning (milestoning, TIS, FFS, MSM,…)

choose 
appropriate 

space 
partitioning

perform 
constrained 
simulations

group!
passage times 

into final 
rate constants

process data 
from simulation 
(passage times 
between cells)

• discrete path sampling (DPS)
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Cell-to-cell rate constant

incomplete 
partitioning

soft 
cells

hard 
cells

A

B

AA

BB

• soft cells were developed to allow complete space 
partitioning using surface-surface rate constants 

• inconvenient for observables, incompatible with DPS
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Methods using hard cells
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• boxed molecular dynamics 
(BXD) - sampling enhanced 
by space partitioning

• hyperdynamics (hyperMD) - 
sampling enhanced by 
biasing the potential 

• dividing surface defined by 
a certain plane involving the 
saddle pointtim
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Limits of TST
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• transition state theory - rate constant = equilibrium flux / 
equilibrium population

• the rate constant is very sensitive to definition of the dividing 
surface

kTST
AB =

flux

population

=

hP (x) [n(x) · v]i@A
hP (x)iA

=

@tpA(0)

pA(0)
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• relaxation involves both exit and penetration - best approach

• (if we have to simulate trajectories) CAN WE DO BETTER? 

• for system of 2 states, over damped dynamics, rate constant 
from mean exit times (formula proven for 1D):

7

Rate constants from trajectories
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No-flux boundary conditions

• isolation of A and B from the rest by placing hard walls 

• straightforward for overdamped dynamics

• impossible for Hamiltonian (deterministic) dynamics

A B
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Equilibrium boundary conditions

• placing an equilibrated neighbour at the boundary 

• exiting particle is replaced by a particle from the equilibrium 
distribution

• the equilibrium distribution is not known a priori 

• TRICK: independence of exiting and entering particles ➣ 
reduction of dynamics to propagation of response functions
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Insight into the response functions

• exit response function Fi|k(t) is 
the distribution of first passage 
times 

• response to supply at the 
boundary Lij|k(t) is the 
trajectory lengths 

• analytical solution for 1 
trajectory averaged over 
trajectories 

• RIGHT: response function for a 
system with 2 cells (A and B)

trajectories from 
equilibrium 
distribution

trajectories from 
the boundaries

FB|A(t) = @tpA(t) ,

LBB|A(t) =
@tFB|A(t)

FB|A(0)

B A
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• different for over damped dynamics and inertial dynamics 
with large friction 

1. partitioning of space into cells 

2. constrained Monte Carlo sampling 

3. molecular dynamics from random initial points terminated 
at cell boundaries 

4. propagation of the response functions - fit of the relaxation 

5. graph transformation / lumping

Optimised simulation protocol
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Limits of the method

• decorrelation of exiting and entering trajectories at the 
boundaries is assumed 

• internal barriers invalidate Markovian assumption 

• some types of breakdowns can be identified from the 
simulation

A
B

AC B
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Application of estimator: 
Sinai billiards

• non-interacting particles with 
equal velocities elastically 
reflect from walls of the billiard 
and the circle inside 

• circle forms a bottleneck - 
transition through the dividing 
surface is a rare event 

• small change in definition of 
the dividing surface should not 
cause large change in the rate 
constants

A

B
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• RXN - “true” rate constant - 
from relaxation 

• TST rate constant - analytical 

• BXD constant from simulated 
equilibrium flux 

• exit rate constant from mean 
exit times 

• DRPS - our estimator 

• results for  2 dividing surfaces

kRXN

AB

kTST

AB

kBXD

AB

kex
AB

kDRPS

AB
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31.58
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7.96

10.56

position of the  
dividing surface
good poor

rate constants  
(in arbitrary units)

Application of estimator: 
Sinai billiards
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Application of DRPS: 
Cluster of Lennard-Jones disks
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• search for rotation-permutation isomers 

• 10-50 cells placed along the collective coordinate - root 
mean square distance from minimum 2
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Rate constants
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Application of DRPS: 
Cluster of Lennard-Jones disks



/19 bf269@cam.ac.ukDiscretised relaxation path sampling (DRPS)

for polyLJ     all minima can be easily found2D
13

17

New application: 
Polymer reversal in a narrow pore
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• polymer confined in a pore is a simple model of DNA or 
peptide in a synthetic or a biological pore 

• dynamics of an LJ polymer can be directly studied by DPS 

• at higher temperatures / truncated potentials ➣ DRPS 
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Future applications

peptide dynamicspolymer reversal polymer translocation

where the unnecessary constant terms are ignored. kB is the
Boltzmann constant and T is the absolute temperature. !1!
and !2! are the values of !! in regions I and II, respectively.
Fm exhibits a free energy barrier as a function of m. The
nature of the free energy barrier depends on "i# conforma-
tional statistics on both regions, and "ii# value of the chemi-
cal potential mismatch $% relative to the entropic part &first
two terms on the right-hand side of Eq. "2#'. The results are
illustrated in Figs. 2 and 3. When $%!0, the barrier is sym-
metric in f!m/N if the size exponent is the same in both
regions. For (1)(2 , the barrier becomes asymmetric. The
free energy minima are downhill from I to II if the chain is
more compact in II than in I. This is illustrated in Fig. 2 by
taking !1!!0.9, !2!!0.5, and N$%/kBT!"3.0. On the
other hand, the free energy minima are uphill if the chain is
more compact in I. This is illustrated in Fig. 2 by taking
!1!!0.5, !2!!0.9, and N$%/kBT!3.0. By keeping the same
value of ( in both regions, the free energy barrier can be
made asymmetric if $%)0, as illustrated in Fig. 3 with !1!
!0.69!!2! .

Following the usual arguments of the nucleation
theory,13 the transport of the chain through the barrier is
described by

*

*t Wm" t #!km"1Wm"1" t #"km!Wm" t #"kmWm" t #

#km#1! Wm#1" t #, "3#

where Wm is the probability of finding a nucleus of m seg-
ments in region II. km is the rate constant for the formation
of a nucleus with m#1 segments from a nucleus with m
segments. km! is the rate constant for the decay of a nucleus
with m segments into a nucleus of m"1 segments. Using the
detailed balance to express km#1! in terms of km and adopting
m to be a continuous variable, we get

*

*t Wm" t #!!"
*

*m D "1 #"m ##
*2

$*m2 km"Wm" t #, "4#

where

D "1 #"m #!"km
*

*m
Fm

kBT
#

*

*m km . "5#

As mentioned above, we assume that the rate constant km is
independent of m "because we deal here with only ho-
mopolymers#, and is dictated by the ratchet potential arising
from the details of the pore. Under this condition, valid for
the experimental problem addressed in this paper, km is taken
to be a nonuniversal constant k0 independent of N. Therefore
Wm is given by

*

*t Wm" t #!
*

*m ! k0kBT *Fm

*m Wm" t ##k0
*

*m Wm" t #" , "6#

It follows14 from Eq. "6# that the mean first passage time +
for the process described by Eq. "6#, i.e., the average time
required by the chain, having already placed at least one
segment in region II, to go from region I to region II is

+!
1
k0
#
0

N
dm1 exp$ Fm1

kBT
% #

0

m1
dm2 exp$ "

Fm2

kBT
% . "7#

The limits 0 and N are actually 1 and N"1, respectively, and
N in the following formulas should be replaced by (N"2) if
one is interested in small values of N. Substituting Eq. "2# in
Eq. "7#, the general results are given in Fig. 4, where + "in

FIG. 1. Polymer escape in transition.

FIG. 2. Plot of Fm in units of kBT against f. Curves represent: solid line,
N$%/kBT!0, !1!!0.5!!2! ; long-dashed line, N$%/kBT!"3, !1!!0.9,
!2!!0.5; dashed line, N$%/kBT!"3, !1!!0.5, !2!!0.9.

FIG. 3. Plot of Fm in units of kBT against f for !1!!0.69!!2! . Curves
represent: solid line, N$%/kBT!0; long-dashed line, N$%/kBT!"1;
dashed line, N$%/kBT!"1.
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biomolecular folding
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• surface reactions 

• (with rigidification) conformational 
transitions of large proteins 

• collaboration? 😊
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@tFj|i(s, t) = @sFj|i(s, t) + Fk|i(0, t)Lkj|i(s) + Fi|j(0, t)Ljj|i(s) ,

@tFk|i(s, t) = @sFk|i(s, t) + Fk|i(0, t)Lkk|i(s) + Fi|j(0, t)Ljk|i(s) ,

@tFi|j(s, t) = @sFi|j(s, t) + Fk|j(0, t)Lki|j(s) + Fj|i(0, t)Lii|j(s) ,

@tFk|j(s, t) = @sFk|j(s, t) + Fk|j(0, t)Lkk|j(s) + Fj|i(0, t)Lik|j(s)

• with initial conditions:
Fj|i(s, 0) = Fj|i(s) ,

Fk|i(s, 0) = Fj|i(s),

Fi|j(s, 0) = 0 ,

Fi|j(s, 0) = 0 .

pi(t) =

Z 1

0
Fj|i(s) + Fk|i(s)ds

Rate constants from response functions

• simulating relaxation from cell i to j with neighbours k:
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