#### Universal Stability Model for Globular Proteins

Boris Fačkovec

Institute of Organic Chemistry and Biochemistry AS CR, vvi.

March 23rd 2012

1/16 Boris Fackovec (boris.fackovec@uochb.cas.cz) Universal Stability Model for Proteins March 23 2012

### Introduction: Demand for Stability Models

- definitions
  - **stability** free energy difference between folded and unfolded state
  - energy function mapping from protein geometry and environment information to stability
  - protein stability model physical model of protein molecule which facilitates stability prediction
- energy functions for protein structure
  - structure prediction
  - protein engineering mutagenesis
- molecular modeling of proteins
  - problem with electrostatic interactions
  - denatured state representation

## Introduction: Current Stability Models

- properties of current protein stability models
  - based of solvent accessible area calculations 1-body, composition-dependent
  - almost exclusively rely on additivity of free energy contributions
- debates on the driving force of protein folding and contribution of particular redisue-residue interactions (hydrogen bonds, salt bridges etc.) to protein stability
- $\bullet$  interaction energy calculations  $\rightarrow$  performance of current force fields
- stability predictors
  - statistical force field FoldX
  - $\bullet\,$  physical force field Medusa  $\rightarrow\,$  ERIS

#### Methods: Interaction energy approach

• proteins (N amino acids) split into 2 N fragments





- 4 types of fragments
  - BB backbone disregarding amino acid type
  - CH charges sidechains (D,E,K,R,H)
  - PO polar sidechains (Y,W,N,Q,T,S)
  - NO non-polar sidechains (A,L,I,V,C,M,P,F)

### Methods: Interaction Energy Matrix Approach

 using additive force field they contain all the information about energy of native structure in sequential context

| NPNP IEM | ALA 1 | ALA 2 | GLN 3 | SER 4 | VAL 5 |
|----------|-------|-------|-------|-------|-------|
| ALA 1    | 0.00  | 0.01  | 0.00  | 0.00  | 0.00  |
| ALA 2    | 0.01  | 0.00  | 0.00  | 0.00  | -0.12 |
| GLN 3    | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| SER 4    | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| VAL 5    | 0.00  | -0.12 | 0.00  | 0.00  | 0.00  |
| ASP 6    | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| GLN 7    | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |
| LEU 8    | 0.00  | 0.00  | 0.00  | 0.00  | -0.54 |
| ILE 9    | 0.00  | -0.22 | 0.00  | 0.00  | -0.32 |
| LYS 10   | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |

Figure 1: Example of interaction energy matrix for non-polar side-chain fragments



Figure 2: Naive model for stability change upon amino acid substitution

• improvement can be made introducing scaling factors

Methods: Our Model of Protein Stability

• Thermodynamic cycle  $\Delta G = \Delta G_1 + \Delta G_2 + \Delta G_3$ 



Figure 3: Unfolding free energy as a sum of the free energies for 3 processes

- $\Delta$  G<sub>1</sub>: polar and non-polar SAS (2 parameters)
- Δ G<sub>2</sub>: interresidual 2-body interactions (10 params), torsional restraints (1 param), configurational entropy (20 params)
- $\Delta$  G<sub>3</sub>: solvation of individual aminoacids (20 params)

#### Methods: Scaling Factors - the Core of the Model

• functional form for a structure

$$\Delta G = \sum_{i=1}^{20} c_i n(AA_i) + \sum_{i=21}^{30} c_i IE_j + c_{31} SAS(np) + c_{32} SAS_{po} + c_{33} E_{tor}$$

- contains 33 parameters
- not enough experimental data!

 $\Delta G \approx 0 k cal/mol$ 

 we can use our set of 1287 calculated IEMs (structures: X-ray, resolution 2 Å or better, single chain, no ligands, 70% sequence identity removed)

### Methods: Optimization Procedure

- genetic algorithm in Octave (population of 1000 vectors, 500 generations)
- fitness function RMSD

$$\overline{f} = \left(\sum_{i=1}^{M} f_i^2\right)^{\frac{1}{2}}$$

of  $\Delta$  G compensation

$$f = \frac{\sum_{i=1}^{20} c_i n(AA_i) + \sum_{i=21}^{30} c_i IE_j + c_{31} SAS(np) + c_{32} SAS_{po} + c_{33} E_{tor}}{\sum_{i=1}^{20} c_i n(AA_i)}$$

- searched space boundaries of SFs
  - 0 ... 1 for 2-body interactions and torsion, without loss of generality

(日) (母) (王) (王)

- 0 .. RIE for 1-body interactions
- -50 .. 50 for SAS SFs

8/16 Boris Fackovec (boris.fackovec@uochb.cas.cz) Universal Stability Model for Proteins March 23 2012

#### Methods: Optimization Algorithm





э

# Results: Contribution of One-Body Interactions to Overall Stability

|       | scaling | scaling |     |      |      |
|-------|---------|---------|-----|------|------|
| amino | factor  | factor  |     |      |      |
| acid  | owest   | highest |     |      |      |
|       |         |         | ARG | 25.7 | 31.3 |
| CYS   | 7.3     | 9.5     | ASP | 25.6 | 31.0 |
| ILE   | 7.2     | 9.6     | HIS | 25.3 | 30.5 |
| PRO   | 7.1     | 9.4     | ASP | 25.4 | 30.8 |
| PHE   | 7.5     | 9.4     |     |      |      |
| ALA   | 7.3     | 9.4     | SER | 14.8 | 18.6 |
| GLY   | 6.9     | 9.3     | GLN | 15.3 | 19.3 |
| LEU   | 7.3     | 9.5     | TRP | 14.9 | 19.3 |
| VAL   | 7.4     | 9.4     | ASN | 15.1 | 19.8 |
| MET   | 7.3     | 9.6     | TYR | 14.8 | 20.2 |
|       |         |         | THR | 15.0 | 18.5 |

# Results: Contribution of Two-Body Interactions to Overall Stability

|         | scaling | scaling |
|---------|---------|---------|
| amino   | factor  | factor  |
| acid    | owest   | highest |
| BB      | 0.578   | 0.71    |
| BBCH    | 0.46    | 0.583   |
| BBPO    | 0.669   | 0.84    |
| BBNP    | 0.284   | 0.356   |
| СНСН    | 0.115   | 0.149   |
| СНРО    | 0.451   | 0.578   |
| CHNP    | 0.401   | 0.561   |
| ρορο    | 0.476   | 0.631   |
| PONP    | 0.471   | 0.603   |
| NPNP    | 0.387   | 0.555   |
| HphobSA | -4.388  | -0.79   |
| HphilSA | -28 371 | -23.991 |
| torsion | 0.391   | 0.49    |

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

## Results: Applicability and Reliability of the Model

- fitness function (RMSD of compensation) about 3%
  - folding free energy in order of tens of kcal/mol probably enough to reach experimental values
  - better than expected decomposition is good enough to include other factors
- challenges remaining
  - additivity of solvation energies in denatured state
  - additivity of intramolecular interactions
  - key positions in native structure
  - solvation free energy of native state as a linear function of polar and nonpolar SAS
  - vibrational entropy not included

### Results: Applicability and Reliability of the Model



Figure 5: Fitness as a function of number of protein structures in data sample. 33 parameters can be reliably determined using just 300 proteins.

- hypothesis native state can be reliably represented by IEM of minimum energy structure
- decomposition of protein stability into one-body and two-body contributions

- we have developed a new transferable and robust model of protein stability
- it can help us to
  - understand data in IEMs (proper treatment of electrostatic interactions)
  - understanding thermodynamics of folding studying contributions
  - develop more accurate energy functions
- 16 parameters are sufficient
- model is robust
- accurate enough to represent ex

(日) (周) (王) (王)

- web application
- stability change upon mutation database
- improvement of the model polar surface definition

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Jiří Vondrášek

Jiří Vymětal
Jiří Kysilka



Figure 6: IOCB Center for Complex Molecular Systems groups.

GAČR P208/10/0725 MŠMT LH11020 RP\_Z40550506 🛓 👧

16 / 16 Boris Fackovec (boris fackovec@uochb.cas.cz)

Universal Stability Model for Proteins March

March 23 2012