Intramolecular Interactions in Globular Proteins

Boris Fačkovec

Advisor: RNDr. Jiří Vondrášek, CSc. Katedra fyzikální a makromolekulové chemie Přírodovědecká fakulta UK

21st December 2011

Boris Fačkovec (borislavujo@gmail.com)

Protein modeling

21st December 2011

1 / 17

Introduction - physical studies of proteins

Sequence-structure-stability-function relationships in globular proteins - central to biochemistry

- 1931 first theory of protein denaturation (Wu)
- 1958 statistical thermodynamics of polymers (Zimm)
- 1958 first resolved protein X-ray structure (Kendrew)
- 1961 Anfinsen's experiments
- 1977 first protein simulation (Karplus)
- 1983 Go model
- 80's-90's intensive development of force fields (Kollman, Jorgensen)
- 1985 knowledge-based force fields (Jernigan, Miyazawa)
- 90's extensive calorimetric (DSC) studies (Privalov, Makhatadze)
- Denatured state investigations (Shortle)

- 3

イロト イポト イヨト イヨト

Introduction - recent development

- 1993 sidechain atlas (Thornton)
- 90's lattice simulations (Shakhnovich)
- 1995 energy landscape perspective (Bryngelson, Onuchic)
- 1995 First force field decomposition of interactions (Lazaridis)
- 2000 Variational theory, spin glasses, principle of minimal frustration (Wolynes)
- 2005 stabilization of rubredoxin by strong dispersion interactions in its core (Vondrasek)
- 2008 identifying stabilizing residues by IEM calculations (Biedermannova)
- 2010 IEM development fragmentation and QM calculations of protein molecules (Berka)
- 2010 FF calculations surprisingly good agreement with benchmark QM (Kolar)

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction - Interaction energy matrix (IEM)

- Fragmentation of a protein native structure
- QM calculations
- Classification of fragments backbone BB, sidechain charged CH, polar PO, non-polar NP
- Pair additivity!

BB IEM	ALA 1	ALA 2	GLN 3	SER 4	VAL 5	ASP 6	GLN 7	LEU 8	ILE 9	LYS 10
ALA 1	0.00	0.00	-2.90	0.56	0.12	0.81	-0.82	0.74	0.47	0.43
ALA 2	0.00	0.00	0.00	-0.34	0.02	-0.11	-0.15	-0.01	-0.03	-0.05
GLN 3	-2.90	0.00	0.00	0.00	-1.09	-0.02	0.39	0.21	0.00	0.09
SER 4	0.56	-0.34	0.00	0.00	0.00	1.26	-0.95	-3.11	-0.06	-0.21
VAL 5	1.12	0.02	-1.09	0.00	0.00	0.00	0.01	-1.09	-3.79	-0.28
ASP 6	0.81	-0.11	-0.02	1.26	0.00	0.00	0.00	-0.05	-1.55	-3.65
GLN 7	0.82	-0.15	0.39	-0.95	0.01	0.00	0.00	0.00	-0.15	-1.43
LEU 8	0.74	-0.01	0.21	-3.11	-1.09	-0.05	0.00	0.00	0.00	-0.06
ILE 9	0.47	-0.03	0.00	-0.06	-3.79	-1.55	-0.15	0.00	0.00	0.00
LYS 10	0.43	-0.05	0.09	-0.21	-0.28	-3.65	-1.43	-0.06	0.00	0.00

Figure: Interaction energy matrix of backbone-backbone interactions for a short peptide

'interaction' = inter-residual non-covalent interaction in single structure $_{\sim \sim \sim \sim}$

Introduction - Types of intramolecular interactions

- Charged ion-ion
 - high values of IEs in IEMs not in correspondence with real stabilization effect
 - high compensation of attractive and repulsive interactions
 - high compensation of interactions in native and unfolded state
 - exceptionally high enthalpic-entropic compensation
- Charged multipoles
- Backbone
- van der Waals, stacking
 - short ranged small compensation in
 - always attractive small compensation
 - probably undervalued in IEMs
 - hydrophobic residues burial folding driving force

- Characterization of magnitudes and distributions of inter-residual non-covalent interaction energies
- Development of unified *in silico* treatment solution to problems with charged residues
- Decomposition of stabilizing energy

- \bullet Structure set selection X-ray resolution <2 Å, single-stranded, no ligands \to 1358 structures
- Optimization of hydrogen atoms GROMACS, OPLS FF
- ullet Fragmentation and IEM calculation ightarrow 10 IEMs
- Terminal backbones not considered,
- HIS double protonated \rightarrow charged residue
- Only interactions with IE<-0.05 kcal/mol or IE>0.05 kcal/mol were sampled
- Subsets size and secondary structure content

Results - Residue interaction energy distributions

Figure: Distribution of RIE for all types of interactions. Various curves represent secondary structure particular classes.

Results - Domain size in globular proteins

Figure: Average RIE - size dependence of NPNP interactions}HCIE of BB-BB interactions.

Boris Fačkovec (borislavujo@gmail.com)

Protein modeling

21st December 2011 9 / 17

Results - Interaction energy distributions

- $\bullet\,$ number of contacts increases immensely with decreasing IE definition, diverges to ∞ at IE=0
- Cumulative distribution of contributions to sum of IEs (DCIE) and its derivative (HCIE)

Figure: Cumulative distribution curve for IE of SER-TYR pair. BIE is the value of the interaction energy where the curve intersects 1 for the first time (-0.32 kcal/mol), $BIE_{0.5}$ is the value where it intersects 0.5 (-1.58 kcal/mol).

Results - Interaction energy distributions

Random energy model:

Figure: HCIE of BB-BB interactions. Red line represents calculated data, green line represents fit using 8 Gaussians.

Boris Fačkovec (borislavujo@gmail.com)

Protein modeling

21st December 2011 11 / 17

Results - Optimum definition of interresidual contact based on interaction energy matrix calculations

Figure: Contact definitions from HCIE curves for each type of interaction

12 / 17

Table: compens = ratio of the sum of all negative IEs to the sum of all IEs. Columns 3–6 show the order contributions of a particular type of interaction to a particular fragment type. x(BIEx) is the ratio of the energy content of the productive and all the interactions.

IE type	CD	BBCO	снсо	РОСО	NPCO	BIE	compens	x(BIEx)
BBBB	-1.6	1.08				-0.28	1.14	0.72
BBCH	- 10	0.09	0.32			-3.5	4.04	0.39
BBPO	- 3	0.1		0.37		-0.4	1.26	0.28
BBNP	-1.8	0.07			0.15	-0.1	1.05	0.08
снсн	- 82		0.16			-69	11.7	0.81
СНРО	- 12		0.1	0.11		- 4	3.03	0.47
CHNP	- 3		0.16		0.1	-1.37	2.5	0.44
РОРО	-0.8			0.33		-0.5	1.29	0.9
PONP	-0.4			1.44	0.82	-0.1	1.06	0.82
NPNP	-0.3				1.48	-0.19	1.09	0.96

- RIE characterized by magnitudes and distributions
- No correlation between sidechain IEs and secondary structure content
- Typical one-domain protein length 110 residues
- Random energy model can be very successfully applied for IE statistics
- Compensation of positive and negative interactions characterized
- Contact definitions for each type of IEs \rightarrow contact orders 1.34 for BB, 0.74, 2.25 and 2.56 for the CH, PO and NP sidechains

- Web application on IOCB's site IEM calculation, contact matrix
- Hydrophobic core definition clusters in contact graphs
- \bullet Scaling factors \rightarrow energy functions

- "Decomposition of Intramolecular Interactions Between Amino-Acids in Globular Proteins - A Consequence for Structural Classes of Proteins and Methods of Their Classification", Fackovec B and Vondrasek J, 2011, chapter 20, "Systems and Computational Biology -Molecular and Cellular Experimental Systems"
- "Optimal definition of inter-residual contact in globular proteins based on pairwise interaction energy calculations", Fackovec B and Vondrasek J, Bioinformatics, submitted

Acknowledgement

Jiří Vondrášek Jiří Vymětal Karel Berka Jiří Kysilka

Protein modeling

21st December 2011