Chemical dynamics and rare events in soft matter physics

Boris Fačkovec

Wales group
Department of Chemistry
University of Cambridge
Trinity Mathematical Society
Cambridge, 22nd February 2015

Big picture

- systems of interest in biology, materials, catalysis...

Chemical dynamics and rare events

Outline

- motivation
- from ab initio to energy landscapes
- friction
- chemical dynamics and the transition state theory
- molecular simulations and the relaxation path sampling
- future directions

Molecules and reactions

- description of system in physics - position x and velocity v

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\mathbf{f}(\mathbf{x}, \mathbf{v}, t) \quad \frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t}=\mathbf{g}(\mathbf{x}, \mathbf{v}, t)
$$

- molecules - clusters of atoms bound by strong bonds
- system described by identity of species and concentration

$$
\frac{\mathrm{d} \mathbf{c}}{\mathrm{~d} t}=\mathbf{h}(\mathbf{c}, t)
$$

- solving rate equations -> chemical kinetics

The first principles

"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble." (Paul Dirac)

$$
\downarrow \begin{gathered}
\Psi\left(x_{1}^{e}, x_{2}^{e}, \ldots, x_{3 M \times n}^{e}, x_{1}^{n}, x_{2}^{n}, \ldots, x_{3 N \times n}^{n}\right) \\
\psi\left(x_{1}^{e}, x_{2}^{e}, \ldots, x_{3 M}^{e}, x_{1}^{n}, x_{2}^{n}, \ldots, x_{3 N}^{n}\right) \\
\psi\left(x_{1}^{e}, x_{2}^{e}, \ldots, x_{3 M}^{e} ; x_{1}^{n}, x_{2}^{n}, \ldots, x_{3 N}^{n}\right)
\end{gathered}
$$

- separation of molecules
- separation of motion - nuclei static compared to electrons

Energy landscapes

$$
V\left(x_{1}^{n}, x_{2}^{n}, \ldots, x_{3 N}^{n}\right)
$$

- all properties defined by the potential energy function
- in 2D resembles mountain landscape

Distance between atoms

Energy, temperature and entropy

- probability of each configuration given by its potential energy

$$
P(\mathbf{x}) \propto e^{-\frac{V(\mathbf{x})}{k_{B} T}}
$$

- grouping configurations into observable states results in information loss -> entropy

```
HHH HHT HTH
```

HHH HHT HTH
HTT THH THT
HTT THH THT
T TH T T T
TTH TTT

```
- grouping of coin tossing, volume


\section*{Dynamics on energy landscapes}
- no relativity for nuclei
- classical dynamics of nuclei
- Newton's equation of motion

(in 1 dimension)
\[
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-\frac{\mathrm{d} V}{\mathrm{~d} x}
\]
- Can be discretised and numerically propagated from an initial structure = molecular dynamics

\section*{Rare events in nature}
- ratio of the largest and lowest relevant timescales >> 1
- challenge for molecular dynamics

molecular vibration
( \(\sim 1 \mathrm{fs}\) )
folding
(~1 ms)


\section*{Density of particles}
- in a beaker, we have an ensemble of (1023) molecules following the same rules
- in the limit of infinitely many particles we can write density
- Newton equation -> Liouville's equation for the density
(in 1D, zero potential)
\(\frac{\partial \rho(x, t)}{\partial t}=-v \frac{\partial \rho(x, t)}{\partial x}\)

adding forces:
\[
\frac{\partial \rho(x, v, t)}{\partial t}=\frac{1}{m} \frac{\partial V(x)}{\partial x} \frac{\partial \rho(x, v, t)}{\partial v}-v \frac{\partial \rho(x, v, t)}{\partial x}
\]

\section*{Adding friction}
- motion on a rough landscape
- what is not included in our model causes random bumps
\[
m \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-\frac{\mathrm{d} V}{\mathrm{~d} x}-\gamma v+\sqrt{2 k_{B} T} \gamma^{1 / 2} \eta(t)
\]

Generally:
\[
\frac{\partial \rho(\mathbf{x}, \mathbf{v}, t)}{\partial t}=\mathcal{F}[\rho(\mathbf{x}, \mathbf{v}, t)]
\]
\begin{tabular}{clcc} 
& no friction & some friction & large friction \\
SODE & Newton & Langevin & Brownian motion \\
PDE & Liouville & Fokker-Planck & Smoluchowski
\end{tabular}

\section*{Partitioning the space in cells}

- rate matrix R is calculated from simulations
\[
\frac{\mathrm{d} \mathbf{c}}{\mathrm{~d} t}=\mathbf{R} \mathbf{c}
\]
- extraction of a smaller system = isolation of cells


\section*{General solution to the FPE}
\[
\frac{\partial \rho(\mathbf{x}, \mathbf{v}, t)}{\partial t}=\mathcal{F}[\rho(\mathbf{x}, \mathbf{v}, t)]
\]
- eigenfunctions of the operator can be found only for some systems


Eigenfunctions of operator \(\mathcal{F}\) describing diffusion on a circle with zero potential everywhere.

Red line (the first eigenfunction) corresponds to the equilibrium distribution
- we are only interested in \(c_{i}(t)=\int_{B_{i}} \mathrm{~d} \mathbf{x} \int_{-\infty}^{\infty} \mathrm{d} \mathbf{v} \rho(\mathbf{x}, \mathbf{v}, t)\)

\section*{The transition state theory}
\[
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t}[A]=k_{A B}[A] \\
k_{\mathrm{AB}}^{\mathrm{TST}}=\frac{\text { eq. flux }}{\text { eq.population }} \\
k_{\mathrm{a}}^{\dagger}(T)=\frac{k T}{h} \frac{Z^{\dagger}}{Z_{\mathrm{a}}} \mathrm{e}^{-\Delta V / k T} \\
k_{\mathrm{a}}^{\dagger}(E)=\frac{\bar{\nu}_{\mathrm{a}}^{\kappa}}{\bar{\nu}^{\dagger}(\kappa-1)}\left(\frac{E-V^{\dagger}}{E-V_{\mathrm{a}}}\right)^{\kappa-1}
\end{gathered}
\]

\section*{Rate constants from trajectories}
- (if we have to simulate trajectories) CAN WE DO BETTER?
- for system of 2 states, rate constant from mean exit times (formula proven for 1D):
\[
k_{\mathrm{AB}}^{\mathrm{ex}}=\frac{p_{\mathrm{B}}^{\mathrm{eq}}}{p_{\mathrm{A}}^{\mathrm{eq}} \tau_{\mathrm{B}}^{\mathrm{ex}}+p_{\mathrm{B}}^{\mathrm{eq}} \tau_{\mathrm{A}}^{\mathrm{ex}}}
\]
- relaxation involves both exit and penetration - best approach



\section*{Our approach}
- boundary conditions for the isolation

\[
\begin{gathered}
\frac{\partial \rho(\mathbf{x}, \mathbf{v}, t)}{\partial t}=\mathcal{F}[\rho(\mathbf{x}, \mathbf{v}, t)] \\
\rho(\mathbf{x}, \mathbf{v}, t)=\rho(\mathbf{x},-\mathbf{v}, t)
\end{gathered}
\]
\(\rho(\mathbf{x}, \mathbf{v}, t)=\rho_{\mathrm{eq}}(\mathbf{x}, \mathbf{v}) \frac{f_{\mathrm{out}}(t)}{f_{\mathrm{eq}}}\)


\section*{More formal exit}
- looking at relaxation from cell \(B_{i}\) to cell \(B_{j}\)
- \(f_{i, k}^{e}(t)\) - probability density that a trajectory initiated at equilibrium in \(B_{i}\) exits this cell toward \(B_{k}\) at time \(t\)
exit probability
\[
p_{i, k}^{e}=\int_{0}^{\infty} f_{i, k}^{e}(t) \mathrm{d} t
\]
mean exit time \(\quad \tau_{i, k}^{e}=\frac{1}{p_{i, k}^{e}} \int_{0}^{\infty} f_{i, k}^{e}(t) t \mathrm{~d} t\)

for each neighbour \(B_{k}\) of \(B_{i}\)

\section*{More formal supply}
- \(f_{i, k}^{e}(t)\) - probability density that an equilibrium trajectory entering \(B_{i}\) from \(B_{j}\) at time \(s\) exits this cell toward \(B_{k}\) at time \(s+t\)
conditional exit probability
\[
p_{j, k}^{i}=\int_{0}^{\infty} L_{j, k}^{i}(t) \mathrm{d} t
\]
mean trajectory
\[
\tau_{j, k}^{i}=\frac{1}{p_{j, k}^{i}} \int_{0}^{\infty} L_{j, k}^{i}(t) t \mathrm{~d} t
\]

for each pair of neighbours of \(B_{i}\)

\section*{Combining exit times and the TST}
- TST rate constant
\[
k_{i, j}^{\mathrm{TST}}=\frac{p_{i, j}^{e}}{\sum_{k \sim i} p_{j, k}^{i} \tau_{j, k}^{i}}
\]
- Exit time rate constant
\[
k_{i, j}^{\mathrm{ex}}=\frac{c_{j}^{e}}{c_{j}^{i} \tau_{i, j}^{e}+c_{i}^{e} \tau_{j, i}^{e}}
\]
- Relaxation rate constant
\[
k_{i, j}=\frac{\left(p_{j}^{*, e}\right)^{2}}{\tau_{j, i}^{*}-\tau_{i, j}^{*}}
\]
where all 3 terms in the equation are obtained by solving certain sets of linear equations

\section*{Illustration on Sinai billiards}
- non-interacting particles with equal velocities elastically reflect from walls of the billiard and the circle inside
- circle forms a bottleneck transition through the dividing surface is a rare event
- small change in definition of the dividing surface should not cause large change in the rate constants


\section*{Toy system: Cluster of Lennard-Jones disks}


- search for rotation-permutation isomers
- 10-50 cells placed along the collective coordinate - root mean square distance from minimum 2

\section*{Towards biology}


\section*{Acknowledgements}
```

