
/23 bf269@cam.ac.ukChemical dynamics and rare events 1

Chemical dynamics and rare events 
in soft matter physics

Wales group 
Department of Chemistry 
University of Cambridge

Boris Fačkovec

Trinity Mathematical Society 
Cambridge, 22nd February 2015

mailto:bf269@cam.ac.uk


/23 bf269@cam.ac.ukChemical dynamics and rare events 2

Big picture

• systems of interest in biology, materials, catalysis…
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Outline

• motivation 

• from ab initio to energy landscapes 

• friction 

• chemical dynamics and the transition state theory 

• molecular simulations and the relaxation path sampling 

• future directions
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Molecules and reactions

• description of system in physics - position x and velocity v 

!

• molecules - clusters of atoms bound by strong bonds 

• system described by identity of species and concentration  
 
 

• solving rate equations -> chemical kinetics

dc

dt
= h(c, t)

dx

dt
= f(x,v, t)

dv

dt
= g(x,v, t)
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The first principles

• separation of molecules 

• separation of motion - nuclei static compared to electrons

“The underlying physical laws necessary for the mathematical 
theory of a large part of physics and the whole of chemistry are 
thus completely known, and the difficulty is only that the exact 
application of these laws leads to equations much too 
complicated to be soluble.” (Paul Dirac) 
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Energy landscapes

• all properties defined by the 
potential energy function 

• in 2D resembles mountain 
landscape
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Energy, temperature and entropy

• probability of each configuration 
given by its potential energy 

• grouping configurations into 
observable states results in 
information loss -> entropy 

• grouping of coin tossing, volume
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Dynamics on energy landscapes

• no relativity for nuclei 

• classical dynamics of nuclei

• Newton’s equation of motion 

(in 1 dimension)
m

d2x

dt2
= �dV

dx

• Can be discretised and numerically propagated from an 
initial structure = molecular dynamics

r + dr  
r 

dr

v + dv

v = dr
dt

a = dv
dt

m m 

dv

v 

a nice illustration from 
Wikipedia
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elongation of  
protein chain (~40 ms)

9

Rare events in nature

• ratio of the largest and lowest relevant timescales >> 1 

• challenge for molecular dynamics

folding 
(~1 ms)

molecular vibration  
(~1 fs)
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• Newton equation -> Liouville’s equation for the density 

(in 1D, zero potential)

10

Density of particles
• in a beaker, we have an ensemble of (1023) molecules 

following the same rules 

• in the limit of infinitely many particles we can write density

ρ
x

@⇢(x, t)

@t

= �v

@⇢(x, t)

@x

adding forces: @⇢(x, v, t)

@t

=
1

m

@V (x)

@x

@⇢(x, v, t)

@v

� v

@⇢(x, v, t)

@x
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Adding friction

• motion on a rough landscape 

• what is not included in our model causes random bumps

m

d2x

dt2
= �dV

dx
� �v +

p
2kBT�

1/2
⌘(t),

no friction large frictionsome friction
SODE
PDE Liouville Fokker-Planck Smoluchowski

Brownian motionLangevinNewton

@⇢(x,v, t)

@t
= F [⇢(x,v, t)]Generally:
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Partitioning the space in cells

A
B

J

I

H

G
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F

C
D

A C

B D

J H E

I G F

• rate matrix R is calculated from simulations 

• extraction of a smaller system = isolation of cells

2

The instantaneous probability pi(t) to find the system in
cell Bi at time t is given in terms of the PDF %(x,v, t)
as

pi(t) =

Z

Bi⇥R3n

%(x,v, t)dxdv, i = 1, . . . , N (9)

Our aim will be to derive an equation for pi(t). If one
assumes that the dynamics between the sets Bi is Marko-
vian, then pi(t), i = 1 . . . , N satisfy the master equation:

ṗi(t) =
NX

j=1

j 6=i

pj(t)kj,i �
NX

j=1

j 6=i

pi(t)ki,j , (10)

where ki,j , i, j = 1, . . . , N , i 6= j, are the entries of the
rate matrix: to leading order in �t, ki,j�t gives the prob-
ability that the system jumps to state j 6= i in [t, t+�t)
given that it was in i at time t.

Clearly, since (9) involves some projection (or coarse-
graining), the dynamics between the sets Bi described
by pi(t) will no longer be Markovian in general even if
the original dynamics are. Even if ones assumes Marko-
vianity, the estimation of the rate constants ki,j from a
time-series is nontrivial: in particular procedures that
seem reasonable may produce an inaccurate set of rate
constants. We will explain why this is the case, and how
to get around this difficulty. Note that since the origi-
nal dynamics satisfies detailed balance, so must the one
specified by (10): this means that we have

peiki,j = pejkj,i, i, j = 1, . . . , N (11)

where pei is the probability to find the system in state i
at equililbrium:

pei =

Z

Bi⇥R3n

%e(x,v)dxdv, i = 1, . . . , N (12)

C. Estimation via pairwise relaxation between cells

Suppose that we single out a pair of states, (i, j) with
i 6= j and ki,j 6= 0 6= kj,i, and artificially eliminate every
transitions except those between these two states. This
can be done by setting kl,k = kk,l = 0 for all (k, l) 6= (i, j),
and it reduces (10) to a single pair of equation describing
how the probabilities relax to equilibrium between i and j
if these two states were artificially isolated from the rest
of the chain:

ṗ⇤i (t) = �p⇤i (t)ki,j + p⇤j (t)kj,i,

ṗ⇤j (t) = �p⇤j (t)kj,i + p⇤i (t)ki,j ,
(13)

where p⇤i (t) and p⇤j (t) denotes respectively the probabil-
ities to find the system in states i and j in the modified
chain. Since p⇤j (t) = 1 � p⇤i (t), (13) can be reduced to
a single equation for p⇤i (t) whose solution for the initial
condition p⇤i (0) = 1 is

p⇤i (t) = p⇤,ei + p⇤,ej e�(ki,j+kj,i)t , (14)

where

p⇤,ei = kj,i/(ki,j + kj,i), p⇤,ej = ki,j/(ki,j + kj,i) (15)

are the equilibrium population of two states in the mod-
ified chain, i.e. p⇤i (t) ! p⇤,ei and p⇤j (t) ! pe,⇤j as t ! 1.
They are related to the equilibrium probabilities for the
original chain defined in (12) via

p⇤,ei =
pei

pei + pej
p⇤,ej =

pej
pei + pej

(16)

We will calculate ki,j via estimation of these these quan-
tities along with the relaxation time ⌧ rxni,j = ⌧ rxnj,i defined
by integrating p⇤i (t)� p⇤,ei on t 2 [0,1):

⌧ rxni,j =
1

p⇤,ej

Z 1

0

�
p⇤i (t)� p⇤,ei

�
dt =

1

ki,j + kj,i
(17)

Solving (15) and (17) in ki,j and kj,i gives the estimates

ki,j =
p⇤,ej

⌧ rxni,j

kj,i =
p⇤,ei

⌧ rxni,j

(18)

Note, since ⌧ rxni,j = ⌧ rxnj,i , we have

p⇤,ei ki,j = p⇤,ej kj,i (19)

i.e. detailed-balance is satisfied.

A

B
CD

FIG. 2. Two possible modifications of the chain. In the
present work we use the modification on the right correspond-
ing to isolation of two cells from the system.

D. Pairwise relaxation at MD level

Here we discuss how to implement the artificial mod-
ification of the chain leading to (13) at the level of the
original dynamics. This is non-trivial since it amounts
to letting the system relax freely between Bi and Bj

while at the same time prohibiting transitions from these
two cells toward any other cell. The question is how to
enforce this constraint since the original dynamics does
make such transitions.

We will base our discussion on deriving equations for
the instantaneous probability fluxes from Bi to Bj and
Bj and Bi, denoted respectively as f⇤

i,j(t) and f⇤
j,i(t). In

terms of these quantites, the equation for p⇤i (t) can be
written as

ṗ⇤i (t) = f⇤
j,i(t)� f⇤

i,j(t). (20)

dc

dt
= R c
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General solution to the FPE
@⇢(x,v, t)

@t
= F [⇢(x,v, t)]

• eigenfunctions of the operator can be found only for some 
systems

• we are only interested in

21
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FIG. 14. First 5 eigenvectors of the rate matrix.

TABLE III. Erors of description for eigenvectors

rank ∆c2soft ∆c2eq,soft ∆c2hard ∆c2eq,hard χsoft χhard

2 50.2 423.0 17.7 649.9 0.12 0.03
4 3.1 103.2 1.4 15.7 0.03 0.09
6 3.1 5.2 47.9 72.5 0.60 0.66

10 0.6 0.7 23.0 26.3 0.84 0.87
12 0.4 0.5 28.5 34.2 0.80 0.83

Concentration differences ∆c2eq are generally lower for
soft cells, which are more delocalised. The relative errors
χ for hard and soft cells are at the same lavel. The rela-
tive errors are large for eigenvectors corresponding to fast
timescales.

b. Block initial population profiles

Relaxation from a more general class of initial popula-
tion distribution was analysed. The initial population was
defined by two continual blocks of 20 neighbouring bins.
All bins in one block have the same concentration, so the
plot of population against position looks like two rectan-
gles. All possible positions of blocks (10 distinguishable
positions of the first block × 20 possible mutual distances)
and 9 different ratios of populations were used.

The results are consistent with the eigenvector approach
used in section E 2 a. MSM’s with states defined by soft
cells are less descriptive (figure 15 top). The relative error
χ is therefore higher for soft cells (figure 15). The initial
concentration profile giving the lowest error when soft cells
are used to define states is the one for which the difference
from equilibrium concentration is the highest. The best
results for hard cells were not obtained for two filled and
two empty cells.
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FIG. 15. Top: Distributions of sums of integrated differences
from the equilibrium populations. Bottom: Distributions of
relative errors. Initial concentration profile giving the minimum
error are sketched in the right top corner.

3. Summary

The error for description of dynamical processes by mile-
stoning with soft cells is at the same level or higher than
the error for the description by DRPS with hard cells. The
simulated systems represent the classes of systems which
are supposed to be the most sensitive to the state defini-
tion. However, it has not been proven that other relevant
parameters of models, such as connectivity of states, fea-
tures of the underlying energy landscape or position of the
dividing surfaces, are less relevant. Therefore, it would be
irresponsible to generalise these results to other systems.

Appendix F: Glossary of symbols and abbreviations

Bi cell defining state i, Bi ⊂ Ω ⊂ R
3n

D diffusion tensor
DRPS discretised relaxation path sampling

F Fokker-Planck evolution operator
Fj|i(t) distribution of first exit times through ∂Bi ∩ ∂Bj

Fj|i(s, t) bivariate response function,
more convenient for propagation than f∗

i,j(t)
f†
i (x) =

∫∞
0

ρ̃†i (x, t)dt, relaxation time for x

f∗
i,k(t) flux through ∂Bi ∩ ∂Bk towards Bk

FPE Fokker-Planck equation
H(x,v) the total energy (Hamiltonian)

h length parameter of billiard table
kB the Boltzmann constant
kf force constant

Ki,j rate constant for the complete chain
ki,j rate constant for i → j transition in a modified chain
k†
i,j the rate constant for pairwise relaxation

with no-flu boundary conditions

Eigenfunctions of operator    
describing diffusion on a circle 
with zero potential everywhere.  

Red line (the first eigenfunction) 
corresponds to the equilibrium 
distribution

F

ci(t) =

Z

Bi

dx

Z 1

�1
dv ⇢(x,v, t)

0.1

-0.1

0 ⇡
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7.2 Transition states and dynamics 385

current local minimum. The kinetic Monte Carlo (KMC) and ‘temperature-
accelerated dynamics’ methods are both based on this approach (Section
7.4). Knowledge of transition states and pathways has also been exploited
simply to survey a potential energy surface (138) and to study relaxation in
disordered materials (139–146) and peptides (147).

Sampling the PES to create connected databases of local minima and
transition states for master equation studies is discussed in Section 7.3. How-
ever, schemes based upon the thermodynamic weights of local minima may
omit higher energy stationary points that make a negligible contribution
to equilibrium thermodynamic properties, but are essential for describing
dynamics. The discrete path sampling theory of Section 7.5 is the analogue
of the dynamical transition path sampling approach described in Section
6.6.3, and provides a framework for appropriate sampling of discrete paths
between particular regions of configuration space. As for the superposition
approach to thermodynamics, dynamical calculations based upon samples
of transition states are most likely to be useful at low temperature, where
conventional simulations suffer from nonergodic sampling. In particular, the
linear master equation approach and the discrete path sampling expres-
sion for the rate assume that the system spends enough time in each local
minimum to lose its memory of previous barrier-crossing events, i.e. the
dynamics are Markovian. Calculations for the ordinary liquid phase of a
model bulk glass former suggest that the system can cross the basins of at-
traction of more than one local minimum in a single MD time step. Under
conditions such as these, conventional MD simulations are probably more
appropriate.

7.2.1 Statistical rate constants

The conventional transition state theory expression for the unimolecular
canonical rate constant k†a, out of minimum a through transition state † is
(111,134–137,148–151)

k†a(T ) =
kT

h

Z†

Za
e−∆V/kT , (7.29)

where the transition state partition function Z† does not include the unique
mode with imaginary frequency, and ∆V is the potential energy difference
between the transition state and minimum a. Different derivations of this
formula treat the passage over the barrier as either a very loose vibration
(150) or as a translation (135, 136, 149). Although a chemical equilibrium

Downloaded from Cambridge Books Online by IP 128.232.241.2 on Tue Jun 17 23:43:23 BST 2014.
http://dx.doi.org/10.1017/CBO9780511721724.008

Cambridge Books Online © Cambridge University Press, 2014

386 Properties of the landscape

between reactants and the transition states is often assumed in producing
equation (7.29), Miller has shown that this is not necessary (152,153).

The thermodynamic formulation of the transition state theory rate con-
stant is (150)

k†a(T ) =
kT

h
e−∆G†/kT =

kT

h
e∆S†/ke−∆H†/kT , (7.30)

where ∆G†, ∆S† and ∆H† are the Gibbs free energy, entropy and enthalpy
of activation per molecule, respectively. This formulation is often used for
reactions in solution, where the thermodynamic quantities may be easier to
estimate than the partition functions in equation (7.29) (137).

The Rice–Ramsperger–Kassel–Marcus (RRKM) theory expression for k†a
is derived by considering the reactive flux through a dividing transition state
surface (111,151,154–159), and yields

k†a(E) =
G†(E)
hΩa(E)

, (7.31)

for E > V † > Va, where G(E) is the phase volume or sum of states up to
energy E for the transition state:

G†(E) =
∫ E

V †
Ω†(E′) dE′. (7.32)

Ω†(E) is the density of states for the transition state excluding the reactive
mode and V † is the potential energy of the transition state. G(E) and Ω(E)
were derived in Section 7.1.1 for the classical limit with κ harmonic vibra-
tional modes. Substituting these expressions immediately gives the classical
harmonic RRKM rate constant:

k†a(E) =
ν̄κa

ν̄†(κ−1)

(
E − V †

E − Va

)κ−1

, (7.33)

and Laplace transformation provides the canonical rate constant in the same
approximation:

k†a(T ) =
ν̄κa

ν̄†(κ−1)
e−(V †−Va)/kT . (7.34)

These are equivalent to the harmonic transition state theory results. In fact,
Laplace transformation of the RRKM expression in equation (7.31) recovers

Downloaded from Cambridge Books Online by IP 128.232.241.2 on Tue Jun 17 23:43:23 BST 2014.
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kTST
AB =

eq.flux

eq.population

d

dt
[A] = kAB [A]

2

The instantaneous probability pi(t) to find the system in
cell Bi at time t is given in terms of the PDF %(x,v, t)
as

pi(t) =

Z

Bi⇥R3n

%(x,v, t)dxdv, i = 1, . . . , N (9)

Our aim will be to derive an equation for pi(t). If one
assumes that the dynamics between the sets Bi is Marko-
vian, then pi(t), i = 1 . . . , N satisfy the master equation:

ṗi(t) =
NX

j=1

j 6=i

pj(t)kj,i �
NX

j=1

j 6=i

pi(t)ki,j , (10)

where ki,j , i, j = 1, . . . , N , i 6= j, are the entries of the
rate matrix: to leading order in �t, ki,j�t gives the prob-
ability that the system jumps to state j 6= i in [t, t+�t)
given that it was in i at time t.

Clearly, since (9) involves some projection (or coarse-
graining), the dynamics between the sets Bi described
by pi(t) will no longer be Markovian in general even if
the original dynamics are. Even if ones assumes Marko-
vianity, the estimation of the rate constants ki,j from a
time-series is nontrivial: in particular procedures that
seem reasonable may produce an inaccurate set of rate
constants. We will explain why this is the case, and how
to get around this difficulty. Note that since the origi-
nal dynamics satisfies detailed balance, so must the one
specified by (10): this means that we have

peiki,j = pejkj,i, i, j = 1, . . . , N (11)

where pei is the probability to find the system in state i
at equililbrium:

pei =

Z

Bi⇥R3n

%e(x,v)dxdv, i = 1, . . . , N (12)

C. Estimation via pairwise relaxation between cells

Suppose that we single out a pair of states, (i, j) with
i 6= j and ki,j 6= 0 6= kj,i, and artificially eliminate every
transitions except those between these two states. This
can be done by setting kl,k = kk,l = 0 for all (k, l) 6= (i, j),
and it reduces (10) to a single pair of equation describing
how the probabilities relax to equilibrium between i and j
if these two states were artificially isolated from the rest
of the chain:

ṗ⇤i (t) = �p⇤i (t)ki,j + p⇤j (t)kj,i,

ṗ⇤j (t) = �p⇤j (t)kj,i + p⇤i (t)ki,j ,
(13)

where p⇤i (t) and p⇤j (t) denotes respectively the probabil-
ities to find the system in states i and j in the modified
chain. Since p⇤j (t) = 1 � p⇤i (t), (13) can be reduced to
a single equation for p⇤i (t) whose solution for the initial
condition p⇤i (0) = 1 is

p⇤i (t) = p⇤,ei + p⇤,ej e�(ki,j+kj,i)t , (14)

where

p⇤,ei = kj,i/(ki,j + kj,i), p⇤,ej = ki,j/(ki,j + kj,i) (15)

are the equilibrium population of two states in the mod-
ified chain, i.e. p⇤i (t) ! p⇤,ei and p⇤j (t) ! pe,⇤j as t ! 1.
They are related to the equilibrium probabilities for the
original chain defined in (12) via

p⇤,ei =
pei

pei + pej
p⇤,ej =

pej
pei + pej

(16)

We will calculate ki,j via estimation of these these quan-
tities along with the relaxation time ⌧ rxni,j = ⌧ rxnj,i defined
by integrating p⇤i (t)� p⇤,ei on t 2 [0,1):

⌧ rxni,j =
1

p⇤,ej

Z 1

0

�
p⇤i (t)� p⇤,ei

�
dt =

1

ki,j + kj,i
(17)

Solving (15) and (17) in ki,j and kj,i gives the estimates

ki,j =
p⇤,ej

⌧ rxni,j

kj,i =
p⇤,ei

⌧ rxni,j

(18)

Note, since ⌧ rxni,j = ⌧ rxnj,i , we have

p⇤,ei ki,j = p⇤,ej kj,i (19)

i.e. detailed-balance is satisfied.

A

B
CD

FIG. 2. Two possible modifications of the chain. In the
present work we use the modification on the right correspond-
ing to isolation of two cells from the system.

D. Pairwise relaxation at MD level

Here we discuss how to implement the artificial mod-
ification of the chain leading to (13) at the level of the
original dynamics. This is non-trivial since it amounts
to letting the system relax freely between Bi and Bj

while at the same time prohibiting transitions from these
two cells toward any other cell. The question is how to
enforce this constraint since the original dynamics does
make such transitions.

We will base our discussion on deriving equations for
the instantaneous probability fluxes from Bi to Bj and
Bj and Bi, denoted respectively as f⇤

i,j(t) and f⇤
j,i(t). In

terms of these quantites, the equation for p⇤i (t) can be
written as

ṗ⇤i (t) = f⇤
j,i(t)� f⇤

i,j(t). (20)

The transition state theory
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• (if we have to simulate trajectories) CAN WE DO BETTER? 

• for system of 2 states, rate constant from mean exit times 
(formula proven for 1D):

Rate constants from trajectories

• relaxation involves both exit and penetration - best approach

position

po
te

nt
ia

l

pr
ob

ab
ilit

y 
de

ns
ity

position

relaxation

kex
AB

=
peq
B

peq
A

⌧ ex
B

+ peq
B

⌧ ex
A
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A B

C

D

E
F

G

A B

⇢(x,v, t) = ⇢
eq

(x,v)
f
out

(t)

f
eq

⇢(x,v, t) = ⇢(x,�v, t)

2

The instantaneous probability pi(t) to find the system in
cell Bi at time t is given in terms of the PDF %(x,v, t)
as

pi(t) =

Z

Bi⇥R3n

%(x,v, t)dxdv, i = 1, . . . , N (9)

Our aim will be to derive an equation for pi(t). If one
assumes that the dynamics between the sets Bi is Marko-
vian, then pi(t), i = 1 . . . , N satisfy the master equation:

ṗi(t) =
NX

j=1

j 6=i

pj(t)kj,i �
NX

j=1

j 6=i

pi(t)ki,j , (10)

where ki,j , i, j = 1, . . . , N , i 6= j, are the entries of the
rate matrix: to leading order in �t, ki,j�t gives the prob-
ability that the system jumps to state j 6= i in [t, t+�t)
given that it was in i at time t.

Clearly, since (9) involves some projection (or coarse-
graining), the dynamics between the sets Bi described
by pi(t) will no longer be Markovian in general even if
the original dynamics are. Even if ones assumes Marko-
vianity, the estimation of the rate constants ki,j from a
time-series is nontrivial: in particular procedures that
seem reasonable may produce an inaccurate set of rate
constants. We will explain why this is the case, and how
to get around this difficulty. Note that since the origi-
nal dynamics satisfies detailed balance, so must the one
specified by (10): this means that we have

peiki,j = pejkj,i, i, j = 1, . . . , N (11)

where pei is the probability to find the system in state i
at equililbrium:

pei =

Z

Bi⇥R3n

%e(x,v)dxdv, i = 1, . . . , N (12)

C. Estimation via pairwise relaxation between cells

Suppose that we single out a pair of states, (i, j) with
i 6= j and ki,j 6= 0 6= kj,i, and artificially eliminate every
transitions except those between these two states. This
can be done by setting kl,k = kk,l = 0 for all (k, l) 6= (i, j),
and it reduces (10) to a single pair of equation describing
how the probabilities relax to equilibrium between i and j
if these two states were artificially isolated from the rest
of the chain:

ṗ⇤i (t) = �p⇤i (t)ki,j + p⇤j (t)kj,i,

ṗ⇤j (t) = �p⇤j (t)kj,i + p⇤i (t)ki,j ,
(13)

where p⇤i (t) and p⇤j (t) denotes respectively the probabil-
ities to find the system in states i and j in the modified
chain. Since p⇤j (t) = 1 � p⇤i (t), (13) can be reduced to
a single equation for p⇤i (t) whose solution for the initial
condition p⇤i (0) = 1 is

p⇤i (t) = p⇤,ei + p⇤,ej e�(ki,j+kj,i)t , (14)

where

p⇤,ei = kj,i/(ki,j + kj,i), p⇤,ej = ki,j/(ki,j + kj,i) (15)

are the equilibrium population of two states in the mod-
ified chain, i.e. p⇤i (t) ! p⇤,ei and p⇤j (t) ! pe,⇤j as t ! 1.
They are related to the equilibrium probabilities for the
original chain defined in (12) via

p⇤,ei =
pei

pei + pej
p⇤,ej =

pej
pei + pej

(16)

We will calculate ki,j via estimation of these these quan-
tities along with the relaxation time ⌧ rxni,j = ⌧ rxnj,i defined
by integrating p⇤i (t)� p⇤,ei on t 2 [0,1):

⌧ rxni,j =
1

p⇤,ej

Z 1

0

�
p⇤i (t)� p⇤,ei

�
dt =

1

ki,j + kj,i
(17)

Solving (15) and (17) in ki,j and kj,i gives the estimates

ki,j =
p⇤,ej

⌧ rxni,j

kj,i =
p⇤,ei

⌧ rxni,j

(18)

Note, since ⌧ rxni,j = ⌧ rxnj,i , we have

p⇤,ei ki,j = p⇤,ej kj,i (19)

i.e. detailed-balance is satisfied.

A

B
CD

FIG. 2. Two possible modifications of the chain. In the
present work we use the modification on the right correspond-
ing to isolation of two cells from the system.

D. Pairwise relaxation at MD level

Here we discuss how to implement the artificial mod-
ification of the chain leading to (13) at the level of the
original dynamics. This is non-trivial since it amounts
to letting the system relax freely between Bi and Bj

while at the same time prohibiting transitions from these
two cells toward any other cell. The question is how to
enforce this constraint since the original dynamics does
make such transitions.

We will base our discussion on deriving equations for
the instantaneous probability fluxes from Bi to Bj and
Bj and Bi, denoted respectively as f⇤

i,j(t) and f⇤
j,i(t). In

terms of these quantites, the equation for p⇤i (t) can be
written as

ṗ⇤i (t) = f⇤
j,i(t)� f⇤

i,j(t). (20)

@⇢(x,v, t)

@t
= F [⇢(x,v, t)]

Our approach
• boundary conditions for the isolation

mailto:bf269@cam.ac.uk
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More formal exit
• looking at relaxation from cell      to cell

•          - probability density that a trajectory initiated at 
equilibrium in      exits this cell toward      at time Bi

Bi Bj

t

mean exit time

exit probability

for each neighbour     of

pei,k =

Z 1

0
fe
i,k(t) dt

⌧ei,k =
1

pei,k

Z 1

0
fe
i,k(t) t dt

fe
i,k(t)

Bk

Bk

Bi

mailto:bf269@cam.ac.uk
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More formal supply

•          - probability density that an equilibrium trajectory 
entering      from       at time    exits this cell toward       
at time 

Bi

mean trajectory 
time

conditional exit 
probability

for each pair of neighbours of 

fe
i,k(t)

Bk

Bi

Bj s
s+ t

pij,k =

Z 1

0
Li
j,k(t) dt

⌧ ij,k =
1

pij,k

Z 1

0
Li
j,k(t) t dt

mailto:bf269@cam.ac.uk
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Combining exit times and the TST
• TST rate constant

• Exit time rate constant

• Relaxation rate constant

kTST
i,j =

pei,jP
k⇠i p

i
j,k⌧

i
j,k

kexi,j =
cej

cij⌧
e
i,j + cei ⌧

e
j,i

ki,j =
(p⇤,ej )2

⌧⇤j,i � ⌧⇤i,j

where all 3 terms in the equation are obtained by solving certain 
sets of linear equations

mailto:bf269@cam.ac.uk
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Illustration on Sinai billiards

20

• non-interacting particles with 
equal velocities elastically 
reflect from walls of the billiard 
and the circle inside 

• circle forms a bottleneck - 
transition through the dividing 
surface is a rare event 

• small change in definition of 
the dividing surface should not 
cause large change in the rate 
constants

A

B

mailto:bf269@cam.ac.uk
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Toy system: 
Cluster of Lennard-Jones disks

• search for rotation-permutation isomers 

• 10-50 cells placed along the collective coordinate - root 
mean square distance from minimum 2
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peptide dynamics

polymer reversal

polymer translocation

where the unnecessary constant terms are ignored. kB is the
Boltzmann constant and T is the absolute temperature. !1!
and !2! are the values of !! in regions I and II, respectively.
Fm exhibits a free energy barrier as a function of m. The
nature of the free energy barrier depends on "i# conforma-
tional statistics on both regions, and "ii# value of the chemi-
cal potential mismatch $% relative to the entropic part &first
two terms on the right-hand side of Eq. "2#'. The results are
illustrated in Figs. 2 and 3. When $%!0, the barrier is sym-
metric in f!m/N if the size exponent is the same in both
regions. For (1)(2 , the barrier becomes asymmetric. The
free energy minima are downhill from I to II if the chain is
more compact in II than in I. This is illustrated in Fig. 2 by
taking !1!!0.9, !2!!0.5, and N$%/kBT!"3.0. On the
other hand, the free energy minima are uphill if the chain is
more compact in I. This is illustrated in Fig. 2 by taking
!1!!0.5, !2!!0.9, and N$%/kBT!3.0. By keeping the same
value of ( in both regions, the free energy barrier can be
made asymmetric if $%)0, as illustrated in Fig. 3 with !1!
!0.69!!2! .

Following the usual arguments of the nucleation
theory,13 the transport of the chain through the barrier is
described by

*

*t Wm" t #!km"1Wm"1" t #"km!Wm" t #"kmWm" t #

#km#1! Wm#1" t #, "3#

where Wm is the probability of finding a nucleus of m seg-
ments in region II. km is the rate constant for the formation
of a nucleus with m#1 segments from a nucleus with m
segments. km! is the rate constant for the decay of a nucleus
with m segments into a nucleus of m"1 segments. Using the
detailed balance to express km#1! in terms of km and adopting
m to be a continuous variable, we get

*

*t Wm" t #!!"
*

*m D "1 #"m ##
*2

$*m2 km"Wm" t #, "4#

where

D "1 #"m #!"km
*

*m
Fm

kBT
#

*

*m km . "5#

As mentioned above, we assume that the rate constant km is
independent of m "because we deal here with only ho-
mopolymers#, and is dictated by the ratchet potential arising
from the details of the pore. Under this condition, valid for
the experimental problem addressed in this paper, km is taken
to be a nonuniversal constant k0 independent of N. Therefore
Wm is given by

*

*t Wm" t #!
*

*m ! k0kBT *Fm

*m Wm" t ##k0
*

*m Wm" t #" , "6#

It follows14 from Eq. "6# that the mean first passage time +
for the process described by Eq. "6#, i.e., the average time
required by the chain, having already placed at least one
segment in region II, to go from region I to region II is

+!
1
k0
#
0

N
dm1 exp$ Fm1

kBT
% #

0

m1
dm2 exp$ "

Fm2

kBT
% . "7#

The limits 0 and N are actually 1 and N"1, respectively, and
N in the following formulas should be replaced by (N"2) if
one is interested in small values of N. Substituting Eq. "2# in
Eq. "7#, the general results are given in Fig. 4, where + "in

FIG. 1. Polymer escape in transition.

FIG. 2. Plot of Fm in units of kBT against f. Curves represent: solid line,
N$%/kBT!0, !1!!0.5!!2! ; long-dashed line, N$%/kBT!"3, !1!!0.9,
!2!!0.5; dashed line, N$%/kBT!"3, !1!!0.5, !2!!0.9.

FIG. 3. Plot of Fm in units of kBT against f for !1!!0.69!!2! . Curves
represent: solid line, N$%/kBT!0; long-dashed line, N$%/kBT!"1;
dashed line, N$%/kBT!"1.
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Towards biology
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